Theory of U-statistics
Author(s)
Bibliographic Information
Theory of U-statistics
(Mathematics and its applications, 273)
Kluwer, c1994
Available at 29 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"This is updated translation by P.V. Malyshev and D.V. Malyshev of the original Russian work Theory of U-Statistics, Kiev, Nauka Dumka c1989" -- T.p. verso
Description and Table of Contents
Description
The theory of U-statistics goes back to the fundamental work of Hoeffding [1], in which he proved the central limit theorem. During last forty years the interest to this class of random variables has been permanently increasing, and thus, the new intensively developing branch of probability theory has been formed. The U-statistics are one of the universal objects of the modem probability theory of summation. On the one hand, they are more complicated "algebraically" than sums of independent random variables and vectors, and on the other hand, they contain essential elements of dependence which display themselves in the martingale properties. In addition, the U -statistics as an object of mathematical statistics occupy one of the central places in statistical problems. The development of the theory of U-statistics is stipulated by the influence of the classical theory of summation of independent random variables: The law of large num bers, central limit theorem, invariance principle, and the law of the iterated logarithm we re proved, the estimates of convergence rate were obtained, etc.
Table of Contents
Preface. Introduction. 1. Basic Definitions and Notions. 2. General Inequalities. 3. The Law of Large Numbers. 4. Weak Convergence. 5. Functional Limit Theorems. 6. Approximation in Limit Theorems. 7. Asymptotic Expansions. 8. Probabilities of Large Deviations. 9. The Law of Iterated Logarithm. 10. Dependent Variables. Historical and Bibliographical Notes. References. Subject Index.
by "Nielsen BookData"