Homological algebra
著者
書誌事項
Homological algebra
(Encyclopaedia of mathematical sciences / editor-in-chief, R.V. Gamkrelidze, v. 38 . Algebra ; 5)
Springer-Verlag, c1994
- : gw
- : us
- タイトル別名
-
Algebra
大学図書館所蔵 全125件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Title of the Russian edition: Itogi nauki i tekhniki, Sovremennye problemy matematiki, Fundamental'nye napravleniya, vol. 38, Algebra 5"--T.p. verso
Includes bibliographical references and indexes
内容説明・目次
内容説明
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
目次
1. Complexes and Cohomology.- 2. The Language of Categories.- 3. Homology Groups in Algebra and in Geometry.- 4. Derived Categories and Derived Functors.- 5. Triangulated Categories.- 6. Mixed Hodge Structures.- 7. Perverse Sheaves.- 8. D-Modules.- References.- Author Index.
「Nielsen BookData」 より