Geometric invariant theory
Author(s)
Bibliographic Information
Geometric invariant theory
(Ergebnisse der Mathematik und ihrer Grenzgebiete, [2. Folge,
Springer-Verlag, c1994
3rd enl. ed
- : us
- : gw
- : pbk
Available at 93 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [253]-290) and index of definitions and notations
Description and Table of Contents
Description
This standard reference on applications of invariant theory to the construction of moduli spaces is a systematic exposition of the geometric aspects of classical theory of polynomial invariants. This new, revised edition is completely updated and enlarged with an additional chapter on the moment map by Professor Frances Kirwan. It includes a fully updated bibliography of work in this area.
Table of Contents
0. Preliminaries.- 1. Definitions.- 2. First properties.- 3. Good and bad actions.- 4. Further properties.- 5. Resume of some results of Grothendieck.- 1. Fundamental theorems for the actions of reductive groups.- 1. Definitions.- 2. The affine case.- 3. Linearization of an invertible sheaf.- 4. The general case.- 5. Functional properties.- 2. Analysis of stability.- 1. A numeral criterion.- 2. The flag complex.- 3. Applications.- 3. An elementary example.- 1. Pre-stability.- 2. Stability.- 4. Further examples.- 1. Binary quantics.- 2. Hypersurfaces.- 3. Counter-examples.- 4. Sequences of linear subspaces.- 5. The projective adjoint action.- 6. Space curves.- 5. The problem of moduli - 1st construction.- 1. General discussion.- 2. Moduli as an orbit space.- 3. First chern classes.- 4. Utilization of 4.6.- 6. Abelian schemes.- 1. Duals.- 2. Polarizations.- 3. Deformations.- 7. The method of covariants - 2nd construction.- 1. The technique.- 2. Moduli as an orbit space.- 3. The covariant.- 4. Application to curves.- 8. The moment map.- 1. Symplectic geometry.- 2. Symplectic quotients and geometric invariant theory.- 3. Kahler and hyperkahler quotients.- 4. Singular quotients.- 5. Geometry of the moment map.- 6. The cohomology of quotients: the symplectic case.- 7. The cohomology of quotients: the algebraic case.- 8. Vector bundles and the Yang-Mills functional.- 9. Yang-Mills theory over Riemann surfaces.- Appendix to Chapter 1.- Appendix to Chapter 2.- Appendix to Chapter 3.- Appendix to Chapter 4.- Appendix to Chapter 5.- Appendix to Chapter 7.- References.- Index of definitions and notations.
by "Nielsen BookData"