Forme de Jordan de la monodromie des singularités superisolées de surfaces

Author(s)
    • Artal-Bartolo, Enrique
Bibliographic Information

Forme de Jordan de la monodromie des singularités superisolées de surfaces

Enrique Artal-Bartolo

(Memoirs of the American Mathematical Society, no. 525)

American Mathematical Society, 1994

Search this Book/Journal
Note

"May 1994, volume 109, number 525 (end of volume)" -- T.p

Includes bibliographical references (p. 81-84)

Description and Table of Contents

Description

In this work, Artal-Bartolo calculates the Jordan form of the monodromy of surface superisolated singularities, using mixed Hodge structure. The main step in this computation is to present explicitly an embedded resolution for this family. It turns out that the topology of these singularities is sufficiently complicated to produce counterexamples to a conjecture of Yau, using the theory of projective plane curves.

Table of Contents

Introduction Forme de Jordan et SHM Les singularites superisolees Le deuxieme polynome de Jordan Le premier polynome de Jordan References bibliographiques.

by "Nielsen BookData"

Related Books: 1-1 of 1
Details
Page Top