Mathematical logic
著者
書誌事項
Mathematical logic
(Undergraduate texts in mathematics)
Springer-Verlag, c1994
2nd ed
- : us
- : gw
- : [pbk.]
- タイトル別名
-
Einführung in die mathematisch Logik
並立書誌 全1件
大学図書館所蔵 全63件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Translation of: Einführung in die mathematisch Logik
Includes bibliographical references and indexes
内容説明・目次
- 巻冊次
-
: us ISBN 9780387942582
内容説明
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraisse's characterization of elementary equivalence, Lindstroem's theorem on the maximality of first-order logic, and the fundamentals of logic programming.
目次
- Preface
- Part A: 1. Introduction
- 2. Syntax of First-Order Languages
- 3. Semantics of first-Order Languages
- 4. A Sequent Calculus
- 5. The Completeness Theorem
- 6. The Lowenheim-Skolem and the Compactness Theorem
- 7. The Scope of First-Order Logic
- 8. Syntactic Interpretations and Normal Forms
- Part B: 9. Extensions of First-Order Logic
- 10. Limitations of the Formal Method
- 11. Free Models and Logic Programming
- 12. An Algebraic Characterization of Elementary Equivalence
- 13. Lindstroem's Theorems
- References
- Symbol Index
- Subject Index
- 巻冊次
-
: [pbk.] ISBN 9781475723571
内容説明
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraisse's characterization of elementary equivalence, Lindstroem's theorem on the maximality of first-order logic, and the fundamentals of logic programming.
目次
- Preface
- Part A: 1. Introduction
- 2. Syntax of First-Order Languages
- 3. Semantics of first-Order Languages
- 4. A Sequent Calculus
- 5. The Completeness Theorem
- 6. The Lowenheim-Skolem and the Compactness Theorem
- 7. The Scope of First-Order Logic
- 8. Syntactic Interpretations and Normal Forms
- Part B: 9. Extensions of First-Order Logic
- 10. Limitations of the Formal Method
- 11. Free Models and Logic Programming
- 12. An Algebraic Characterization of Elementary Equivalence
- 13. Lindstroem's Theorems
- References
- Symbol Index
- Subject Index
- 巻冊次
-
: gw ISBN 9783540942580
内容説明
This junior/senior level text is devoted to a study of first-order logic and its role in the foundations of mathematics: What is a proof? How can a proof be justified? To what extent can a proof be made a purely mechanical procedure? How much faith can we have in a proof that is so complex that no one can follow it through in a lifetime? The first substantial answers to these questions have only been obtained in this century. The most striking results are contained in Goedells work: First, it is possible to give a simple set of rules that suffice to carry out all mathematical proofs; but, second, these rules are necessarily incomplete - it is impossible, for example, to prove all true statements of arithmetic. The book begins with an introduction to first-order logic, Goedel's theorem, and model theory. A second part covers extensions of first-order logic and limitations of the formal methods. The book covers several advanced topics, not commonly treated in introductory texts, such as Trachtenbrot's undecidability theorem. Fraisse's elementary equivalence, and Lindstroem's theorem on the maximality of first-order logic.
「Nielsen BookData」 より