Higher spinor classes

書誌事項

Higher spinor classes

J.F. Jardine

(Memoirs of the American Mathematical Society, no. 528)

American Mathematical Society, 1994

タイトル別名

Spinor classes

大学図書館所蔵 件 / 18

この図書・雑誌をさがす

注記

"July 1994, volume 110, number 528 (third of 6 numbers)"--T.p

Includes bibliographical references (p. 87-88)

内容説明・目次

内容説明

This work defines the higher spinor classes of an orthogonal representation of a Galois group. These classes are higher-degree analogues of the Frohlich spinor class, which quantify the difference between the Stiefel-Whitney classes of an orthogonal representation and the Hasse-Witt classes of the associated form. Jardine establishes various basic properties, including vanishing in odd degrees and an induction formula for quadratic field extensions. The methods used include the homotopy theory of simplicial presheaves and the action of the Steenrod algebra on modetale cohomology.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ