Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces
Author(s)
Bibliographic Information
Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces
(Memoirs of the American Mathematical Society, no. 530)
American Mathematical Society, 1994
Available at 20 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"July 1994, volume 110, number 530 (fifth of 6 numbers)" -- T.p
Includes bibliographical references (p. 125-126)
Description and Table of Contents
Description
In this work, Han and Sawyer extend Littlewood-Paley theory, Besov spaces, and Triebel-Lizorkin spaces to the general setting of a space of homogeneous type. For this purpose, they establish a suitable analogue of the Calderon reproducing formula and use it to extend classical results on atomic decomposition, interpolation, and T1 and Tb theorems. Some new results in the classical setting are also obtained: atomic decompositions with vanishing b-moment, and Littlewood-Paley characterizations of Besov and Triebel-Lizorkin spaces with only half the usual smoothness and cancellation conditions on the approximate identity.
Table of Contents
Introduction $T_N^{-1}$ is a Calderon-Zygmund operator The Calderon-type reproducing formula on spaces of homogeneous type The Besov and Triebel-Lizorkin spaces on spaces of homogeneous type The $T1$ theorems of $\dot B_p^{\alpha,q}$ and $\dot F_p^{\alpha,q}$ Atomic decomposition of $\dot B_p^{\alpha,q}$ and $\dot F_p^{\alpha,q}$ Duality and interpolation of $\dot B_p^{\alpha,q}$ and $\dot F_p^{\alpha,q}$ References.
by "Nielsen BookData"