Complete minimal surfaces of finite total curvature
著者
書誌事項
Complete minimal surfaces of finite total curvature
(Mathematics and its applications, v. 294)
Kluwer Academic, c1994
大学図書館所蔵 全33件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. [143]-153
Includes index
内容説明・目次
内容説明
This monograph contains an exposition of the theory of minimal surfaces in Euclidean space, with an emphasis on complete minimal surfaces of finite total curvature. Our exposition is based upon the philosophy that the study of finite total curvature complete minimal surfaces in R3, in large measure, coincides with the study of meromorphic functions and linear series on compact Riemann sur faces. This philosophy is first indicated in the fundamental theorem of Chern and Osserman: A complete minimal surface M immersed in R3 is of finite total curvature if and only if M with its induced conformal structure is conformally equivalent to a compact Riemann surface Mg punctured at a finite set E of points and the tangential Gauss map extends to a holomorphic map Mg _ P2. Thus a finite total curvature complete minimal surface in R3 gives rise to a plane algebraic curve. Let Mg denote a fixed but otherwise arbitrary compact Riemann surface of genus g. A positive integer r is called a puncture number for Mg if Mg can be conformally immersed into R3 as a complete finite total curvature minimal surface with exactly r punctures; the set of all puncture numbers for Mg is denoted by P (M ). For example, Jorge and Meeks [JM] showed, by constructing an example g for each r, that every positive integer r is a puncture number for the Riemann surface pl.
目次
Preface. 1: Background Material. 1.1. Simplicial Homology. 1.2. Complex Algebraic Varieties. 1.3. Compact Riemann Surfaces. 1.4. The Brill-Noether Theorem. 2: Minimal Surfaces: General Theory. 2.1. Intrinsic Surface Theory. 2.2. The Method of Moving Frames. 2.3. The Gauss Map and the Weierstrass Representation. 2.4. The Chern-Osserman Theorem. 2.5. Examples. 2.6. Bernstein Type Theorems. 2.7. Stability of Complete Minimal Surfaces. 3: Minimal Surfaces with Finite Total Curvature. 3.1. The Puncture Number Problem. 3.2. Moduli Space of Algebraic Minimal Surfaces. Bibliography. Index.
「Nielsen BookData」 より