Identification of dynamical systems with small noise
著者
書誌事項
Identification of dynamical systems with small noise
(Mathematics and its applications, v. 300)
Kluwer Academic Publishers, c1994
大学図書館所蔵 件 / 全33件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Bibliography: p. 289-296
Includes index
内容説明・目次
内容説明
Small noise is a good noise. In this work, we are interested in the problems of estimation theory concerned with observations of the diffusion-type process Xo = Xo, 0 ~ t ~ T, (0. 1) where W is a standard Wiener process and St(') is some nonanticipative smooth t function. By the observations X = {X , 0 ~ t ~ T} of this process, we will solve some t of the problems of identification, both parametric and nonparametric. If the trend S(-) is known up to the value of some finite-dimensional parameter St(X) = St((}, X), where (} E e c Rd , then we have a parametric case. The nonparametric problems arise if we know only the degree of smoothness of the function St(X), 0 ~ t ~ T with respect to time t. It is supposed that the diffusion coefficient c is always known. In the parametric case, we describe the asymptotical properties of maximum likelihood (MLE), Bayes (BE) and minimum distance (MDE) estimators as c --+ 0 and in the nonparametric situation, we investigate some kernel-type estimators of unknown functions (say, StO,O ~ t ~ T). The asymptotic in such problems of estimation for this scheme of observations was usually considered as T --+ 00 , because this limit is a direct analog to the traditional limit (n --+ 00) in the classical mathematical statistics of i. i. d. observations. The limit c --+ 0 in (0. 1) is interesting for the following reasons.
目次
Introduction. 1. Auxiliary Results. 2. Asymptotic Properties of Estimator in Standard and Nonstandard Situations. 3. Expansions. 4. Nonparametric Estimation. 5. The Disorder Problem. 6. Partially Observed Systems. 7. Minimum Distance Estimation. Remarks. References. Index.
「Nielsen BookData」 より