Linear algebra
著者
書誌事項
Linear algebra
(Graduate texts in mathematics, v. 23)
Springer-Verlag, c1981
4th ed
- : us
- : gw
- タイトル別名
-
Lineare Algebra
並立書誌 全1件
-
-
Linear algebra / Werner Greub
BA04250218
-
Linear algebra / Werner Greub
大学図書館所蔵 全46件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Revised second printing"
Originally published as Lineare Algebra: Berlin : Springer, 1958. (Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete ; Bd. 97)
Bibliography: p. [445]-446
Includes index
内容説明・目次
- 巻冊次
-
: us ISBN 9780387901107
内容説明
This textbook gives a detailed and comprehensive presentation of linear algebra based on an axiomatic treatment of linear spaces. For this fourth edition some new material has been added to the text, for instance, the intrinsic treatment of the classical adjoint of a linear transformation in Chapter IV, as well as the discussion of quaternions and the classifica tion of associative division algebras in Chapter VII. Chapters XII and XIII have been substantially rewritten for the sake of clarity, but the contents remain basically the same as before. Finally, a number of problems covering new topics-e.g. complex structures, Caylay numbers and symplectic spaces - have been added. I should like to thank Mr. M. L. Johnson who made many useful suggestions for the problems in the third edition. I am also grateful to my colleague S. Halperin who assisted in the revision of Chapters XII and XIII and to Mr. F. Gomez who helped to prepare the subject index. Finally, I have to express my deep gratitude to my colleague J. R. Van stone who worked closely with me in the preparation of all the revisions and additions and who generously helped with the proof reading.
目次
0. Prerequisites.- I. Vector spaces.- 1. Vector spaces.- 2. Linear mappings.- 3. Subspaces and factor spaces.- 4. Dimension.- 5. The topology of a real finite dimensional vector space.- II. Linear mappings.- 1. Basic properties.- 2. Operations with linear mappings.- 3. Linear isomorphisms.- 4. Direct sum of vector spaces.- 5. Dual vector spaces.- 6. Finite dimensional vector spaces.- III. Matrices.- 1. Matrices and systems of linear equations.- 2. Multiplication of matrices.- 3. Basis transformation.- 4. Elementary transformations.- IV. Determinants.- 1. Determinant functions.- 2. The determinant of a linear transformation.- 3. The determinant of a matrix.- 4. Dual determinant functions.- 5. The adjoint matrix.- 6. The characteristic polynomial.- 7. The trace.- 8. Oriented vector spaces.- V. Algebras.- 1. Basic properties.- 2. Ideals.- 3. Change of coefficient field of a vector space.- VI. Gradations and homology.- 1. G-graded vector spaces.- 2. G-graded algebras.- 3. Differential spaces and differential algebras.- VII. Inner product spaces.- 1. The inner product.- 2. Orthonormal bases.- 3. Normed determinant functions.- 4. Duality in an inner product space.- 5. Normed vector spaces.- 6. The algebra of quaternions.- VIII. Linear mappings of inner product spaces.- 1. The adjoint mapping.- 2. Selfadjoint mappings.- 3. Orthogonal projections.- 4. Skew mappings.- 5. Isometric mappings.- 6. Rotations of Euclidean spaces of dimension 2, 3 and 4.- 7. Differentiate families of linear automorphisms.- IX. Symmetric bilinear functions.- 1. Bilinear and quadratic functions.- 2. The decomposition of E.- 3. Pairs of symmetric bilinear functions.- 4. Pseudo-Euclidean spaces.- 5. Linear mappings of Pseudo-Euclidean spaces.- X. Quadrics.- 1. Affine spaces.- 2. Quadrics in the affine space.- 3. Affine equivalence of quadrics.- 4. Quadrics in the Euclidean space.- XI. Unitary spaces.- 1. Hermitian functions.- 2. Unitary spaces.- 3. Linear mappings of unitary spaces.- 4. Unitary mappings of the complex plane.- 5. Application to Lorentz-transformations.- XII. Polynomial algebra.- 1. Basic properties.- 2. Ideals and divisibility.- 3. Factor algebras.- 4. The structure of factor algebras.- XIII. Theory of a linear transformation.- 1. Polynomials in a linear transformation.- 2. Generalized eigenspaces.- 3. Cyclic spaces.- 4. Irreducible spaces.- 5. Application of cyclic spaces.- 6. Nilpotent and semisimple transformations.- 7. Applications to inner product spaces.
- 巻冊次
-
: gw ISBN 9783540901105
内容説明
This textbook intends to provide a detailed presentation of linear algebra based on axiomatic treatment of linear spaces. The book has been revised and updated to include a considerable number of new exercises covering new material.
「Nielsen BookData」 より