Spectroscopy of molecular rotation in gases and liquids
Author(s)
Bibliographic Information
Spectroscopy of molecular rotation in gases and liquids
Cambridge University Press, 1994
Available at 15 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
National Institutes of Natural Sciences Okazaki Library and Information Center図
428.1/SP9131462211
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Spectroscopic studies can reveal a wealth of information about the rotational and vibrational behaviour of the constituent molecules of gases and liquids. This 1994 book reviews the fundamental concepts and important models which underpin such studies, dealing in particular with the phenomenon of spectral collapse, which accompanies the transition from rare gas to dense liquid. Throughout, discussion of the various quantum mechanical and semiclassical theories is interwoven with analysis of experimental results. These include data from optical, NMR, ESR and acoustic investigations. The book concludes with a discussion of the latest theories describing the mechanism of rotational diffusion in liquid solutions. This comprehensive review of theoretical models and techniques will be invaluable to graduate students and researchers interested in molecular dynamics and spectroscopy.
Table of Contents
- Introduction
- 1. Rotational relaxation
- 2. Orientational relaxation in dense media
- 3. Transformation of isotropic scattering spectra
- 4. Quantum theory of spectral collapse
- 5. Rotational relaxation. Kinetic and spectral manifestations
- 6. Impact theory of orientational relaxation
- 7. Rotation and libration in a fluctuating cell
- Appendices
- References.
by "Nielsen BookData"