Evolutionary computing : AISB Workshop, Leeds, U.K., April 11-13, 1994 : selected papers
Author(s)
Bibliographic Information
Evolutionary computing : AISB Workshop, Leeds, U.K., April 11-13, 1994 : selected papers
(Lecture notes in computer science, 865)
Springer-Verlag, c1994
- : gw
- : us
Available at 62 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references
Description and Table of Contents
Description
This volume is based on the Workshop on Evolutionary Computing held in Leeds, U.K. in April 1994 under the sponsorship of the Society for the Study of Artificial Intelligence and Simulation of Behaviour. In addition to the 22 best papers presented at the workshop, there are two invited contributions by Ray Paton and Colin Reever.
The volume addresses several aspects of evolutionary computing, particularly genetic algorithms, and its applications, for example in search, robotics, signal processing, machine learning, and scheduling. The papers are organized in sections on theoretical and biological foundations, techniques, classifier systems, and applications.
Table of Contents
Formal memetic algorithms.- A statistical mechanical formulation of the dynamics of genetic algorithms.- Evolutionary stability in simple classifier systems.- Nonbinary transforms for genetic algorithm problems.- Enhancing evolutionary computation using analogues of biological mechanisms.- Exploiting mate choice in evolutionary computation: Sexual selection as a process of search, optimization, and diversification.- An empirical comparison of selection methods in evolutionary algorithms.- An evolution strategy and genetic algorithm hybrid: An initial implementation and first results.- Genetic algorithms and directed adaptation.- Genetic algorithms and neighbourhood search.- A unified paradigm for parallel Genetic Algorithms.- Distributed coevolutionary genetic algorithms for multi-criteria and multi-constraint optimisation.- Inductive operators and rule repair in a hybrid genetic learning system: Some initial results.- Adaptive learning of a robot arm.- Co-evolving Co-operative populations of rules in learning control systems.- Learning anticipatory behaviour using a delayed action classifier system.- Applying a restricted mating policy to determine state space niches using immediate and delayed reinforcement.- A comparison between two architectures for searching and learning in maze problems.- Fast practical evolutionary timetabling.- Optimising a presentation timetable using evolutionary algorithms.- Genetic algorithms and flowshop scheduling: towards the development of a real-time process control system.- Genetic algorithms for digital signal processing.- Complexity reduction using expansive coding.- The application of genetic programming to the investigation of short, noisy, chaotic data series.
by "Nielsen BookData"