Mathematical methods in optimization of differential systems
著者
書誌事項
Mathematical methods in optimization of differential systems
(Mathematics and its applications, v. 310)
Kluwer Academic, c1994
- タイトル別名
-
Metode matematice în optimazarea sistemelor differenţiale
大学図書館所蔵 全25件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"This is an updated and revised translation of the original Romanian work, Metode matematice in optimazarea sistemelor differentiale, Editura Academiei, Bucharest, c1989" -- T.p. verso
Includes bibliographical references and index
内容説明・目次
内容説明
This work is a revised and enlarged edition of a book with the same title published in Romanian by the Publishing House of the Romanian Academy in 1989. It grew out of lecture notes for a graduate course given by the author at the University if Ia~i and was initially intended for students and readers primarily interested in applications of optimal control of ordinary differential equations. In this vision the book had to contain an elementary description of the Pontryagin maximum principle and a large number of examples and applications from various fields of science. The evolution of control science in the last decades has shown that its meth ods and tools are drawn from a large spectrum of mathematical results which go beyond the classical theory of ordinary differential equations and real analy ses. Mathematical areas such as functional analysis, topology, partial differential equations and infinite dimensional dynamical systems, geometry, played and will continue to play an increasing role in the development of the control sciences. On the other hand, control problems is a rich source of deep mathematical problems. Any presentation of control theory which for the sake of accessibility ignores these facts is incomplete and unable to attain its goals. This is the reason we considered necessary to widen the initial perspective of the book and to include a rigorous mathematical treatment of optimal control theory of processes governed by ordi nary differential equations and some typical problems from theory of distributed parameter systems.
目次
Preface. Symbols and Notations. I: Generalized Gradients and Optimality. 1. Fundamentals of Convex Analysis. 2. Generalized Gradients. 3. The Ekeland Variational Principle. II: Optimal Control of Ordinary Differential Systems. 1. Formulation of the Problem and Existence. 2. The Maximum Principle. 3. Applications of the Maximum Principle. III: The Dynamic Programming Method. 1. The Dynamic Programming Equation. 2. Variational and Viscosity Solutions to the Equation of Dynamic Programming. 3. Constructive Approaches to Synthesis Problem IV: Optimal Control of Parameter Distributed Systems. 1. General Description of Parameter Distributed Systems. 2. Optimal Convex Control Problems. 3. The HINFINITY-Control Problem. 4. Optimal Control of Nonlinear Parameter Distributed Systems. Subject Index.
「Nielsen BookData」 より