Basic number theory
著者
書誌事項
Basic number theory
(Classics in mathematics)
Springer-Verlag, c1995
大学図書館所蔵 件 / 全67件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"Reprint of the 1973 edition"
Originally published: 2nd ed. Berlin ; New York : Springer-Verlag, 1973, in series: die Grundlehren der mathematischen Wissenschaften ; Bd. 144
Includes index of definitions
内容説明・目次
内容説明
From the reviews: "L.R. Shafarevich showed me the first edition [...] and said that this book will be from now on the book about class field theory. In fact it is by far the most complete treatment of the main theorems of algebraic number theory, including function fields over finite constant fields, that appeared in book form." Zentralblatt MATH
目次
I. Elementary Theory.- I. Locally compact fields.- 1. Finite fields.- 2. The module in a locally compact field.- 3. Classification of locally compact fields.- 4. Structure of p-fields.- II. Lattices and duality over local fields.- 1. Norms.- 2. Lattices.- 3. Multiplicative structure of local fields.- 4. Lattices over R.- 5. Duality over local fields.- III. Places of A-fields.- 1. A-fields and their completions.- 2. Tensor-products of commutative fields.- 3. Traces and norms.- 4. Tensor-products of A-fields and local fields.- IV. Adeles.- 1. Adeles of A-fields.- 2. The main theorems.- 3. Ideles.- 4. Ideles of A-fields.- V. Algebraic number-fields.- 1. Orders in algebras over Q.- 2. Lattices over algebraic number-fields.- 3. Ideals.- 4. Fundamental sets.- VI. The theorem of Riemann-Roch.- VII. Zeta-functions of A-fields.- 1. Convergence of Euler products.- 2. Fourier transforms and standard functions.- 3. Quasicharacters.- 4. Quasicharacters of A-fields.- 5. The functional equation.- 6. The Dedekind zeta-function.- 7. L-functions.- 8. The coefficients of the L-series.- VIII. Traces and norms.- 1. Traces and norms in local fields.- 2. Calculation of the different.- 3. Ramification theory.- 4. Traces and norms in A-fields.- 5. Splitting places in separable extensions.- 6. An application to inseparable extensions.- II. Classfield Theory.- IX. Simple algebras.- 1. Structure of simple algebras.- 2. The representations of a simple algebra.- 3. Factor-sets and the Brauer group.- 4. Cyclic factor-sets.- 5. Special cyclic factor-sets.- X. Simple algebras over local fields.- 1. Orders and lattices.- 2. Traces and norms.- 3. Computation of some integrals.- XI. Simple algebras over A-fields.- 1. Ramification.- 2. The zeta-function of a simple algebra.- 3. Norms in simple algebras.- 4. Simple algebras over algebraic number-fields.- XII. Local classfield theory.- 1. The formalism of classfield theory.- 2. The Brauer group of a local field.- 3. The canonical morphism.- 4. Ramification of abelian extensions.- 5. The transfer.- XIII. Global classfield theory.- 1. The canonical pairing.- 2. An elementary lemma.- 3. Hasse's "law of reciprocity".- 4. Classfield theory for Q.- 5. The Hilbert symbol.- 6. The Brauer group of an A-field.- 7. The Hilbert p-symbol.- 8. The kernel of the canonical morphism.- 9. The main theorems.- 10. Local behavior of abelian extensions.- 11. "Classical" classfield theory.- 12. "Coronidis loco".- Notes to the text.- Appendix I. The transfer theorem.- Appendix III. Shafarevitch's theorem.- Appendix IV. The Herbrand distribution.- Index of definitions.
「Nielsen BookData」 より