Geometry of sets and measures in euclidean spaces : fractals and rectifiability
著者
書誌事項
Geometry of sets and measures in euclidean spaces : fractals and rectifiability
(Cambridge studies in advanced mathematics, 44)
Cambridge University Press, 1995
大学図書館所蔵 全73件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 305-333), list of notation, and index of terminology
"Parts of this work were first published by Universidad Extremadura in 1986"--T.p. verso
内容説明・目次
内容説明
Now in paperback, the main theme of this book is the study of geometric properties of general sets and measures in euclidean spaces. Applications of this theory include fractal-type objects such as strange attractors for dynamical systems and those fractals used as models in the sciences. The author provides a firm and unified foundation and develops all the necessary main tools, such as covering theorems, Hausdorff measures and their relations to Riesz capacities and Fourier transforms. The last third of the book is devoted to the Beisovich-Federer theory of rectifiable sets, which form in a sense the largest class of subsets of euclidean space posessing many of the properties of smooth surfaces. These sets have wide application including the higher-dimensional calculus of variations. Their relations to complex analysis and singular integrals are also studied. Essentially self-contained, this book is suitable for graduate students and researchers in mathematics.
目次
- Acknowledgements
- Basic notation
- Introduction
- 1. General measure theory
- 2. Covering and differentiation
- 3. Invariant measures
- 4. Hausdorff measures and dimension
- 5. Other measures and dimensions
- 6. Density theorems for Hausdorff and packing measures
- 7. Lipschitz maps
- 8. Energies, capacities and subsets of finite measure
- 9. Orthogonal projections
- 10. Intersections with planes
- 11. Local structure of s-dimensional sets and measures
- 12. The Fourier transform and its applications
- 13. Intersections of general sets
- 14. Tangent measures and densities
- 15. Rectifiable sets and approximate tangent planes
- 16. Rectifiability, weak linear approximation and tangent measures
- 17. Rectifiability and densities
- 18. Rectifiability and orthogonal projections
- 19. Rectifiability and othogonal projections
- 19. Rectifiability and analytic capacity in the complex plane
- 20. Rectifiability and singular intervals
- References
- List of notation
- Index of terminology.
「Nielsen BookData」 より