Arithmetic of diagonal hypersurfaces over finite fields
著者
書誌事項
Arithmetic of diagonal hypersurfaces over finite fields
(London Mathematical Society lecture note series, 209)
Cambridge University Press, 1995
- : pbk
大学図書館所蔵 全72件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 163-166
Includes index
内容説明・目次
内容説明
There is now a large body of theory concerning algebraic varieties over finite fields, and many conjectures exist in this area that are of great interest to researchers in number theory and algebraic geometry. This book is concerned with the arithmetic of diagonal hypersurfaces over finite fields, with special focus on the Tate conjecture and the Lichtenbaum-Milne formula for the central value of the L-function. It combines theoretical and numerical work, and includes tables of Picard numbers. Although this book is aimed at experts, the authors have included some background material to help non-specialists gain access to the results.
目次
- 1. Twisted Jacobi sums
- 2. Cohomology groups of n=nnm(c)
- 3. Twisted Fermat motives
- 4. The inductive structure and the Hodge and Newton polygons
- 5. Twisting and the Picard numbers n=nmn(c)
- 6. Brauer numbers associated to twisted Jacobi sums
- 7. Evaluating the polynomials Q(n,T) at T=q-r
- 8. The Lichtenbaum-Milne conjecture for n=nnm(c)
- 9. Observations and open problems.
「Nielsen BookData」 より