Gaussian random functions
著者
書誌事項
Gaussian random functions
(Mathematics and its applications, v. 322)
Kluwer Academic Publishers, c1995
大学図書館所蔵 全35件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Translated from Russian
Includes bibliographical references (p. 295-326) and index
内容説明・目次
内容説明
It is well known that the normal distribution is the most pleasant, one can even say, an exemplary object in the probability theory. It combines almost all conceivable nice properties that a distribution may ever have: symmetry, stability, indecomposability, a regular tail behavior, etc. Gaussian measures (the distributions of Gaussian random functions), as infinite-dimensional analogues of tht< classical normal distribution, go to work as such exemplary objects in the theory of Gaussian random functions. When one switches to the infinite dimension, some "one-dimensional" properties are extended almost literally, while some others should be profoundly justified, or even must be reconsidered. What is more, the infinite-dimensional situation reveals important links and structures, which either have looked trivial or have not played an independent role in the classical case. The complex of concepts and problems emerging here has become a subject of the theory of Gaussian random functions and their distributions, one of the most advanced fields of the probability science. Although the basic elements in this field were formed in the sixties-seventies, it has been still until recently when a substantial part of the corresponding material has either existed in the form of odd articles in various journals, or has served only as a background for considering some special issues in monographs.
目次
Preface. 1: Gaussian distributions and random variables. 2: Multi-dimensional Gaussian distributions. 3: Covariances. 4: Random functions. 5: Examples of Gaussian random functions. 6: Modelling the covariances. 7: Oscillations. 8: Infinite-dimensional Gaussian distributions. 9: Linear functionals, admissible shifts, and the kernel. 10: The most important Gaussian distributions. 11: Convexity and the isoperimetric inequality. 12: The large deviations principle. 13: Exact asymptotics of large deviations. 14: Metric entropy and the comparison principle. 15: Continuity and boundedness. 16: Majorizing measures. 17: The functional law of the iterated logarithm. 18: Small deviations. 19: Several open problems. Comments. References. Subject index. List of basic notations.
「Nielsen BookData」 より