Nonlinear dynamics and pattern formation in semiconductors and devices : proceedings of the International Conference on Nonlinear Dynamics and Pattern Formation in the Natural Environment, Noordwijkerhout, the Netherlands, July 4-7, 1994

Author(s)

Bibliographic Information

Nonlinear dynamics and pattern formation in semiconductors and devices : proceedings of the International Conference on Nonlinear Dynamics and Pattern Formation in the Natural Environment, Noordwijkerhout, the Netherlands, July 4-7, 1994

F.-J. Niedernostheide (ed.)

(Springer proceedings in physics, v. 79)

Springer-Verlag, c1995

Available at  / 19 libraries

Search this Book/Journal

Note

Includes bibliographical references

Description and Table of Contents

Description

In Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices the contributions of the International Conference on Nonlinear Dynamics and Pattern Formation in the Natural Environment (ICPF '94) in Noordwijkerhout, held by many internationally reknown experts, are compiled. To connect the field of semiconductor physics with the theory of nonequilibrium dissipative systems, the emphasis lies on the study of localized structures, their stability and bifurcation behaviour. A point of special interest is the evolution of dynamic structures and the investigation of more complex structures arising from interactions between these structures. Possible applications of nonlinear effects and self-organization phenomena with respect to signal processing are discussed.

Table of Contents

0.- 1.2.2 Doped SL, v > 0, ? ? 0.- 1.3 Phase Diagram and PC Time-Dependent Oscillations.- 1.3.1 Undoped Photoexcited SL, v = 0, ? > 0.- 1.3.2 Doped SL, v > 0, ? > 0, 0 < c ? 1.- 1.4 Asymptotics.- 1.5 Final Remarks.- 2 Oscillatory Transport Instabilities and Complex Spatio-Temporal Dynamics in Semiconductors.- 2.1 Introduction.- 2.2 Current Filaments in Crossed Electric and Magnetic Fields.- 2.3 Spiking in Layered Semiconductor Structures.- 2.3.1 Modelling the Dynamic Behaviour.- 2.3.2 Results.- 2.4 Field Domains in Superlattices.- 2.4.1 The Model.- 2.4.2 Static Characteristic.- 2.4.3 Spatio-Temporal Oscillations.- 2.5 Conclusions.- 3 Space Charge Instabilities and Nonlinear Waves in Extrinsic Semiconductors.- 3.1 Introduction.- 3.2 Full Rate Equation Model.- 3.3 Non-Dimensionalization and the Reduced Model.- 3.4 The Case of Time-Independent (dc) Current Bias.- 3.4.1 Steady States and the J-E Curve.- 3.4.2 Periodic, Solitary and Monotone Wave Solutions.- 3.4.3 Dynamical Stability of Periodic, Solitary and Monotone Waves.- 3.5 The Case of dc Voltage Bias.- 3.5.1 Position-Dependent Steady States.- 3.5.2 Numerical Studies of Solitary Waves.- 3.5.3 Stability Analysis and Hopf Bifurcations from the Steady State.- 3.6 Concluding Remarks.- 4 Autosolitons in Form of Current Filaments and Electric Field Domains in Semiconductors and Devices.- 4.1 Introduction.- 4.2 Formation of Current Filaments and Electric Field Domains in Semiconductors with Positive Differential Conductivity.- 4.2.1 Current Filaments in Transistor Structures.- 4.2.2 Multi-Filament Current States in Reverse-Biased P-N Structures.- 4.2.3 Current Filaments in Dense Electron Hole-Plasmas.- 4.2.4 Electric Field Domains in Hot Electron Hole-Plasmas.- 4.3 Local Active and Damping Processes. Concept of "Activator" and "Inhibitor".- 4.3.1 Possibility of the Appearance of Current Filaments or Electric Field Domains and Form of the Current-Voltage Characteristic of Semiconductors.- 4.3.2 An Activator-Inhibitor Model.- 4.4 Autosolitons in Semiconductors.- 4.4.1 Form of Autosolitons.- 4.4.2 Basic Types of Autosolitons.- 4.5 Some Properties of Autosolitons.- 4.5.1 Main Types of Self-Organization Phenomena.- 4.5.2 "Nucleation Centre" for the Spontaneous Formation of Autosolitons in Semiconductors.- 4.5.3 Effects Determining the Evolution of Autosolitons.- 4.5.4 Processes of Random Appearance and Disappearance of Autosolitons.- 4.5.5 Transitions Between Different Types of Autosolitons.- 4.5.6 On Mechanisms of Spatiotemporal Chaos (Turbulence) in Semiconductors.- 4.6 Conclusions.- 5 Pattern Formation of the Electroluminescence in AC ZnS:Mn Devices.- 5.1 Introduction.- 5.2 Experimental Set-Up.- 5.3 Electroluminescence Basics.- 5.4 Experimental Results.- 5.4.1 Stationary Microfilaments and Hysteresis.- 5.4.2 Frontpropagation.- 5.4.3 Autowaves.- 5.4.4 Mobile Filaments and Strings.- 5.4.5 Global Spatiotemporal Oscillations.- 5.4.6 Summary of Experimental Results.- 5.5 Discussion.- 5.5.1 Formation of Microfilaments.- 5.5.2 Comparison with Reaction-Diffusion Systems.- 5.6 Conclusions.- 6 Structure Formation in Charge Density Wave Systems.- 6.1 The Peierls Transition.- 6.2 Materials.- 6.3 The Electronic Transport in CDW Systems.- 6.4 Structure Formation of CDW Systems.- 6.4.1 Metastability, Memory, and Hysteresis.- 6.4.2 Intermittent Oscillations and S-Shaped Negative Differential Resistance.- 6.4.3 Narrow-Band Noise and Broad-Band Noise.- 6.4.4 Mode-Locking.- 6.5 Conclusion and Outlook.- 7 Current Filamentation in Dipolar Electric Fields.- 7.1 Introduction.- 7.2 Stationary Current Filaments in a Dipolar Electric Field.- 7.2.1 Experimental Setup.- 7.2.2 Large-Area Filament Reconstruction.- 7.2.3 One-Dimensional Model of a Large-Area Filament.- 7.2.4 Magnetic Field in the One-Dimensional Model.- 7.2.5 Equal-Areas Rule for Coexistence Field.- 7.2.6 Bendable Filament.- 7.3 Filamentary Structure under Interband Illumination.- 7.3.1 Dynamic Behaviour of Illuminated Samples.- 7.3.2 Hypothesis on the Underlying Mechanism.- 7.3.3 Large Time Scale Dynamic Behaviour.- 7.4 Conclusions.- 8 Spatiotemporal Patterns and Generic Bifurcations in a Semiconductor Device.- 8.1 Introduction.- 8.2 Measuring Techniques.- 8.3 Experimentally Observed Bifurcation Sequences by Increasing the DC Voltage Bias.- 8.3.1 The Current-Voltage Characteristic.- 8.3.2 Transition of a Spatially Uniform State to a Static Localized Filament.- 8.3.3 Transition of a Static to a Rocking Filament.- 8.3.4 Period-Doubling Cascade and Chaotic Filament Motions.- 8.3.5 Transition of a Rocking to a Travelling Filament.- 8.4 Influence of Other Parameters on the Dynamical Behaviour.- 8.4.1 Frequency-Locking and Quasiperiodicity.- 8.4.2 Influence of the Temperature.- 8.4.3 Influence of a Magnetic Field.- 8.5 Model and Physical Mechanism.- 8.5.1 Two-Layer Model.- 8.5.2 Activation, Inhibition, Competition.- 8.6 Numerical Results.- 8.6.1 Bifurcations to Static, Breathing, Travelling and Chaotically Oscillating Filaments by Using Homogeneous Neumann Boundary Conditions.- 8.6.2 Influence of the Time Constants.- 8.6.3 Bifurcations to Static, Rocking and Travelling Filaments by Using Mixed Boundary Conditions.- 8.7 Summary and Conclusions.- 9 Current Filamentation in P-I-N Diodes: Experimental Observations and an Equivalent Circuit Model.- 9.1 Introduction.- 9.2 Theoretical Description.- 9.2.1 Double Injection with Deep Traps.- 9.2.2 Equivalent Circuit Model.- 9.3 Stationary Pattern Formation.- 9.3.1 Experimental Technique.- 9.3.2 Observations and Comparison.- 9.4 Spatio-Temporal Dynamics.- 9.4.1 Periodic Oscillations.- 9.4.2 Nonperiodic Oscillations.- 9.5 Conclusion.- 10 Nonlinear and Chaotic Charge Transport in Semi-Insulating Semiconductors.- 10.1 Introduction.- 10.2 Materials and Experimental Procedure.- 10.2.1 GaAs.- 10.2.2 InP.- 10.2.3 Polycrystalline Si.- 10.2.4 Porous Si.- 10.3 Results and Discussion.- 10.3.1 GaAs.- 10.3.2 InP.- 10.3.3 Polycrystalline Si.- 10.3.4 Porous Si.- 10.4 Model of LFO in Crystalline Semi-Insulating Semiconductors with Deep Levels.- 10.5 Conclusions.- 11 Technical Applications of a 2-D Optoelectronic P-N-P-N Winner-Take-All Array.- 11.1 Introduction.- 11.2 The Winner-Take-All Network.- 11.2.1 Maximum Identification.- 11.3 Applications of the WTA Network.- 11.3.1 Vander Lugt Correlator with WTA Maximum Identification.- 11.3.2 WTA Networks and Fuzzy Logic.- 11.3.3 Minimum Identification.- 11.3.4 Optical Neural Network.- 11.4 Concluding Remarks.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top