Semigroups of operators and spectral theory
著者
書誌事項
Semigroups of operators and spectral theory
(Pitman research notes in mathematics series, 330)
Longman , Wiley, 1995
大学図書館所蔵 全57件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 132-135)
内容説明・目次
内容説明
This book presents some aspects of the theory of semigroups of operators, mostly from the point of view of its interaction withspectral theory. In order to make it self-contained, a concise description of the basic theory of semigroups, with complete proofs, is included in Part I. Some of the author's recent results, such as the construction of the Hille-Yosida space for general operators, the semi-simplicity manifold, and a Taylor formula for semigroups as functions of their generator, are also included in Part I.
Part II describes recent generalizations (most of them in bookform for the first time), including pre-semigroups, semi-simplicity manifolds in situations more general than that considered in Part I, semigroups of unbounded symmetric operators, and an analogous result on "local cosine families" and semi-analytic vectors. It is hoped that this book will inspire more research in this field. This book will be of particular interest to graduate students and researchers working operator theory and its applications.
目次
Introduction
The Hille-Yosida theory
The Hille-Yosida space
Dissipativity
The Trotter-Kato convergence theorem
Exponential formulas
The Hille-Phillips perturbation theorem
Groups and semi-simplicity manifold
Analyticity
Non-commutative Taylor formula
Pre-semigroups
Semi-simplicity manifold (real spectrum case)
Semi-simplicity manifold (case R = C p(-A0))
Laplace-Stieltjes space
Semigroups of unbounded symmetrick operators
Local cosine families of symmetrick operators
Notes and references
Bibliography
「Nielsen BookData」 より