Science and technology of ceramic fuel cells
著者
書誌事項
Science and technology of ceramic fuel cells
Elsevier, 1995
大学図書館所蔵 全7件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Ceramic fuel cells, commonly known as solid oxide fuel cells (SOFCs), have been under development for a broad range of electric power generation applications. The most attractive feature of the SOFC is its clean and efficient production of electricity from a variety of fuels. The SOFC has the potential to be manufactured and operated cost-effectively. The widening interest in this technology, thus, arises from the continuing need to develop cleaner and more efficient means of converting energy sources into useful forms.This topical book provides a comprehensive treatise on solid oxide fuel cells and succeeds successfully in filling the gap in the market for a reference book in this field. Directed towards scientists, engineers, and technical managers working with SOFCs as well as ceramic devices based on conducting materials, and in related fields, the book will also be invaluable as a textbook for science and engineering courses.
目次
Introduction. Scope. General Characteristics of Ceramic Fuel Cells. Types of ceramic fuel cells. Cell components. Comparison with other types of fuel cells. Historical Background of Ceramic Fuel Cells. References. Principles of Operation. General. Thermodynamic Principles. Fuel Cell Efficiency. Electrochemical efficiency. Other efficiencies. Power Generation. Characteristics of Ceramic Fuel Cells. Features. Effect of electronic conduction in electrolyte. Types of Fuel and Oxidant. Fuel. Oxidant. Fuel-Processing System. Power-Conditioning System. References. Electrical Conduction in Ceramics. General. Defects in Fluoride-Type Oxides. Defect structure of doped MO2. Conductivities of oxygen ions, electrons, and electron holes. Defect domains. Defect associations and clusters. Defects in Perovskite-Type Oxides. Conduction Processes and Transference Numbers. General transport equations. Electronic, ionic and total current. Transference number measurements. References. Electrolyte. Requirements. Stabilized Zirconia. Preparation. General properties and phase transformation. Stability. Electrical conductivity. Chemical interaction. Thermal expansion. Mechanical properties. Doped Ceria. Stabilized Bismuthsesquioxide. Other Oxygen-Ion Conductors. Protonic Conductors. References. Cathode. Requirements. Lanthanum Manganite. Preparation. General properties, phase transformation and stoichiometry. Stability. Electrical conductivity. Chemical interaction. Thermal expansion. Other properties. Lanthanum Cobaltite. Other Materials. References. Anode. Requirements. Nickel/Yttria-Stabilized Zirconia Cermet. Preparation. Stability. Electrical conductivity. Chemical interaction. Thermal expansion. Other Materials. References. Interconnect. Requirements. Lanthanum Chromite. Preparation. General properties, phase transformation and stoichiometry. Stability. Electrical conductivity. Chemical interaction. Thermal expansion. Sinterability. Gas permeability. Other Materials. References. Electrode Reaction. General. Reactions at Anode. Electrochemical oxidation of hydrogen. Electrochemical oxidation of carbon monoxide. Reaction of sulfide impurities. Reforming of hydrocarbons. Ractions at Cathode. Oxygen reduction at metal electrode. Oxygen reduction at oxide electrode. References. Stack Design and Fabrication. General. Sealless Tubular Design. Design features. Advantages and disadvantages. Fabrication. Performance and technological status. Segmented-Cell-in-Series Design. Design features. Advantages and disadvantages. Fabrication. Performance and technological status. Monolithic Design. Design features. Advantages and disadvantages. Fabrication. Performance and technological status. Flat-Plate Deisgn. Design features. Advantages and disadvantages. Fabrication. Performance and technological status. References. Modeling and Analysis. General. Stress Analysis. Electrical Analysis. Modeling of Current and Temperature Distribution. References. System and Application. General. Electric Utility. Cogeneration. Transportation. Space and Other Applications. References. Appendix. Selected References Relevant to Solid Oxide Fuel Cell Technology. Index.
「Nielsen BookData」 より