Science and technology of ceramic fuel cells

Bibliographic Information

Science and technology of ceramic fuel cells

Nguyen Quang Minh, Takehiko Takahashi

Elsevier, 1995

Available at  / 7 libraries

Search this Book/Journal

Note

Includes bibliographical references and index

Description and Table of Contents

Description

Ceramic fuel cells, commonly known as solid oxide fuel cells (SOFCs), have been under development for a broad range of electric power generation applications. The most attractive feature of the SOFC is its clean and efficient production of electricity from a variety of fuels. The SOFC has the potential to be manufactured and operated cost-effectively. The widening interest in this technology, thus, arises from the continuing need to develop cleaner and more efficient means of converting energy sources into useful forms.This topical book provides a comprehensive treatise on solid oxide fuel cells and succeeds successfully in filling the gap in the market for a reference book in this field. Directed towards scientists, engineers, and technical managers working with SOFCs as well as ceramic devices based on conducting materials, and in related fields, the book will also be invaluable as a textbook for science and engineering courses.

Table of Contents

Introduction. Scope. General Characteristics of Ceramic Fuel Cells. Types of ceramic fuel cells. Cell components. Comparison with other types of fuel cells. Historical Background of Ceramic Fuel Cells. References. Principles of Operation. General. Thermodynamic Principles. Fuel Cell Efficiency. Electrochemical efficiency. Other efficiencies. Power Generation. Characteristics of Ceramic Fuel Cells. Features. Effect of electronic conduction in electrolyte. Types of Fuel and Oxidant. Fuel. Oxidant. Fuel-Processing System. Power-Conditioning System. References. Electrical Conduction in Ceramics. General. Defects in Fluoride-Type Oxides. Defect structure of doped MO2. Conductivities of oxygen ions, electrons, and electron holes. Defect domains. Defect associations and clusters. Defects in Perovskite-Type Oxides. Conduction Processes and Transference Numbers. General transport equations. Electronic, ionic and total current. Transference number measurements. References. Electrolyte. Requirements. Stabilized Zirconia. Preparation. General properties and phase transformation. Stability. Electrical conductivity. Chemical interaction. Thermal expansion. Mechanical properties. Doped Ceria. Stabilized Bismuthsesquioxide. Other Oxygen-Ion Conductors. Protonic Conductors. References. Cathode. Requirements. Lanthanum Manganite. Preparation. General properties, phase transformation and stoichiometry. Stability. Electrical conductivity. Chemical interaction. Thermal expansion. Other properties. Lanthanum Cobaltite. Other Materials. References. Anode. Requirements. Nickel/Yttria-Stabilized Zirconia Cermet. Preparation. Stability. Electrical conductivity. Chemical interaction. Thermal expansion. Other Materials. References. Interconnect. Requirements. Lanthanum Chromite. Preparation. General properties, phase transformation and stoichiometry. Stability. Electrical conductivity. Chemical interaction. Thermal expansion. Sinterability. Gas permeability. Other Materials. References. Electrode Reaction. General. Reactions at Anode. Electrochemical oxidation of hydrogen. Electrochemical oxidation of carbon monoxide. Reaction of sulfide impurities. Reforming of hydrocarbons. Ractions at Cathode. Oxygen reduction at metal electrode. Oxygen reduction at oxide electrode. References. Stack Design and Fabrication. General. Sealless Tubular Design. Design features. Advantages and disadvantages. Fabrication. Performance and technological status. Segmented-Cell-in-Series Design. Design features. Advantages and disadvantages. Fabrication. Performance and technological status. Monolithic Design. Design features. Advantages and disadvantages. Fabrication. Performance and technological status. Flat-Plate Deisgn. Design features. Advantages and disadvantages. Fabrication. Performance and technological status. References. Modeling and Analysis. General. Stress Analysis. Electrical Analysis. Modeling of Current and Temperature Distribution. References. System and Application. General. Electric Utility. Cogeneration. Transportation. Space and Other Applications. References. Appendix. Selected References Relevant to Solid Oxide Fuel Cell Technology. Index.

by "Nielsen BookData"

Details

  • NCID
    BA26020710
  • ISBN
    • 044489568X
  • LCCN
    95021137
  • Country Code
    ne
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Amsterdam
  • Pages/Volumes
    xii,366p
  • Size
    25cm
  • Classification
  • Subject Headings
Page Top