Elements of machine learning
著者
書誌事項
Elements of machine learning
(The Morgan Kaufmann series in machine learning)
Morgan Kaufmann Publishers, c1996
大学図書館所蔵 全34件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [389]-414) and index
内容説明・目次
内容説明
Recent years have seen an explosion of work on machine learning, the computational study of algorithms that improve performance based on experience. Research on rule induction, neural networks, genetic algorithms, case-based reasoning, and probabilistic inference has produced a variety of robust methods for inducing knowledge from training data. This book covers the main induction algorithms explored in the literature and presents them within a coherent theoretical framework that moves beyond traditional paradigm boundaries.
Elements of Machine Learning provides a comprehensive introduction to the fundamental concepts and problems in the field. The book illustrates a variety of basic algorithms for inducing simple concepts from experience, presents alternatives for organizing learned concepts into large-scale structures, and discusses adaptations of the learning methods to more complex problem-solving tasks. The chapters describe these computational techniques in detail and give examples of their operation, along with exercises and references to the literature.
This text is suitable for use in graduate courses on machine learning. Researchers and students in artificial intelligence, cognitive science, and statistics will find it a useful and informative addition to their libraries.
目次
1. An overview of machine learning
2. The induction of logical conjunctions
3. The induction of threshold concepts
4. The induction of competitive concepts
5. The construction of decision lists
6. Revision and extension of inference networks
7. The formation of concept hierarchies
8. Other issues in concept induction
9. The formation of transition networks
10. The acquisition of search-control knowledge
11. The formation of macro-operators
12. Prospects for machine learning
「Nielsen BookData」 より