Reduced rank regression : with applications to quantitative structure-activity relationships
Author(s)
Bibliographic Information
Reduced rank regression : with applications to quantitative structure-activity relationships
(Contributions to statistics)
Physica-Verlag, c1995
Available at 17 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Reduced rank regression is widely used in statistics to model multivariate data. In this monograph, theoretical and data analytical approaches are developed for the application of reduced rank regression in multivariate prediction problems. For the first time, both classical and Bayesian inference is discussed, using recently proposed procedures such as the ECM-algorithm and the Gibbs sampler. All methods are motivated and illustrated by examples taken from the area of quantitative structure-activity relationships (QSAR).
Table of Contents
1. Quantitative Structure Activity Relationships (QSAR).- 1.1. Introduction.- 1.2. Modification of Substances.- 1.3. Physico-Chemical Descriptors.- 1.4. Biological Descriptors.- 1.5. Prediction Model.- 1.6. The Development of an Insecticide: an Example.- 2. Linear Multivariate Prediction.- 2.1. Introduction.- 2.2. Multivariate Prediction.- 2.3. Prediction Criteria.- 2.3.1. Introduction.- 2.3.2. Loss Function.- 2.3.3. Expected Loss.- 2.3.4. Relevant Predictor Space.- 2.3.5. Estimation of the Expected Loss.- 2.3.5.1. Point Predictors.- 2.3.5.2. Density Predictors.- 2.4. Exploratory Graphical Methods.- 2.5. Method and Variable Selection.- 2.5.1. Introduction.- 2.5.2. Method Selection.- 2.5.3. Variable Selection.- 2.6. Assessment of the Goodness of Prediction of the Selected Model.- 3. Heuristic Multivariate Prediction Methods.- 3.1. Introduction.- 3.2. Principal Component Regression.- 3.3. Partial Least Squares.- 3.4. Dimension Selection.- 3.5. Example.- 4. Classical Analysis of Reduced Rank Regression.- 4.1. Introduction.- 4.2. QSAR: Biological Responses.- 4.3. Reduced Rank Regression Models.- 4.3.1. Model.- 4.3.2. Parametrization.- 4.3.3. Reduced Rank Regression or Multivariate Regression ?.- 4.3.4. The Geometry of Reduced Rank Regression Models.- 4.3.5. Likelihood.- 4.3.6. Error Structure.- 4.3.7. Maximum Likelihood Estimation of the Parameters B, ?, .- 4.3.8. Maximum Likelihood Estimation of the Parameter A.- 4.3.8.1. Known Error Covariance Matrix.- 4.3.8.2. Error Covariance Matrix Proportional to the Identity Matrix.- 4.3.8.3. Unstructured Error Covariance Matrix.- 4.3.8.4. Diagonal Error Covariance Matrix.- 4.3.9. Asymptotic Distribution of the Predictions.- 4.3.10 Example.- 4.4. Extensions of the Standard Reduced Rank Regression Model.- 4.4.1. Structured Error Covariance Matrix.- 4.4.2. Latent Variable Models.- 4.4.3. Non-normal Errors, Outliers and Robustification.- 4.4.4. Nonlinearities.- 4.4.5. Econometric Models.- 4.5. Prediction Criteria for the Rank Selection of Reduced Rank Regression Models.- 4.5.1. Likelihood.- 4.5.2. Information Criterion for Rank Selection.- 4.5.2.1. Estimation of the Information Criterion.- 4.5.2.2. A Simulation Study.- 4.5.3. Mean Squared Error of Prediction for Rank Selection.- 4.5.3.1. Estimation of the Mean Squared Error of Prediction.- 4.5.3.2. A Simulation Study.- 4.5.4. Example.- 4.6. Variable Selection for Reduced Rank Regression Models.- 4.6.1. Prediction Criteria for Variable Selection.- 4.6.2. A Simulation Study.- 4.6.3. Example.- 5. Bayesian Analysis of Reduced Rank Regression.- 5.1. Introduction.- 5.2. The Reduced Rank Regression Model.- 5.2.1. Likelihood.- 5.2.2. Parametrization.- 5.2.3. Full Conditional Priors.- 5.2.4. Full Conditional Posteriors.- 5.2.5. Structured Error Covariance Matrix.- 5.2.6. Predictive Distribution.- 5.2.7. Rank Determination.- 5.3. Markov Chain Monte Carlo Methods.- 5.3.1. Gibbs Sampling of the Posterior Distribution.- 5.3.2. Gibbs Sampling of the Predictive Distribution.- 5.4. Example.- 6. Case Studies.- 6.1. (R)Voltaren: An Anti-Inflammatory Drug.- 6.1.1. Data.- 6.1.2. Analysis.- 6.2. Development of a Herbicide.- 6.2.1. Data.- 6.2.2. Analysis.- 7. Discussion.- A.1 Introduction.- A.2 Multivariate Regression MR.- A.3 Principal Component Analysis PCA.- A.4 Partial Least Squares PLS.- A.5 Canonical Correlation Analysis CCA.- A.6 Reduced Rank Regression with Diagonal Error Covariance Matrix RRR.- A.7 Redundancy Analysis RDA.- A.8 Software.- A.9 Matrix Algebra Definitions.- A.10 Multivariate Distributions.- References.- Main Notations and Abbreviations.
by "Nielsen BookData"