Evolution processes and the Feynman-Kac formula
著者
書誌事項
Evolution processes and the Feynman-Kac formula
(Mathematics and its applications, v. 353)
Kluwer Academic, c1996
大学図書館所蔵 全33件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book is an outgrowth of ideas originating from 1. Kluvanek. Unfortunately, Professor Kluvanek did not live to contribute to the project of writing up in a systematic form, the circle of ideas to which the present work is devoted. It is more than likely that with his input, the approach and areas of emphasis of the resulting exposition would have been quite different from what we have here. Nevertheless, the stamp of Kluvanek's thought and philosophy (but not necessarily his approval) abounds throughout this book. Although the title gives no indication, integration theory in vector spaces is a cen tral topic of this work. However, the various notions of integration developed here are intimately connected with a specific application-the representation of evolutions by func tional integrals. The representation of a perturbation to the heat semigroup in terms of Wiener measure is known as the Feynman-Kac formula, but the term has a wider meaning in the present work. Traditionally, such representations have been used to obtain analytic information about perturbations to free evolutions as an alternative to arguments with a more operator-theoretic flavour. No applications of this type are given here. It is an un derlying assumption of the presentation of this material that representations of the nature of the Feynman-Kac formula are worth obtaining, and in the process of obtaining them, we may be led to new, possibly fertile mathematical structures-a view largely motivated by the pervasive use of path integrals in quantum physics.
目次
Preface. Introduction. 1. Vector Measures and Function Spaces. 2. Evolution Processes. 3. Feynman-Kac Formulae. 4. Bilinear Integration. 5. Random Evolutions. 6. Some Bounded Evolution Processes. 7. Integration with Respect to Unbounded Set Functions. 8. The Schroedinger Process. 9. The Radial Dirac Process. Bibliography. Index.
「Nielsen BookData」 より