Diffusion processes and their sample paths
Author(s)
Bibliographic Information
Diffusion processes and their sample paths
(Classics in mathematics)
Springer, c1996
Available at 66 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"Reprint of the 1974 edition [i.e. second printing, corrected, 1974]"
"Originally published as vol. 125 of the Grundlehren der mathematischen Wissenschaften"--T.p. verso
Includes bibliographical references (p. [306]-312) and index
Description and Table of Contents
Description
Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Ito and McKean.
Table of Contents
Prerequisites.- 1. The standard BRownian motion.- 1.1. The standard random walk.- 1.2. Passage times for the standard random walk.- 1.3. Hin?in's proof of the de Moivre-laplace limit theorem.- 1.4. The standard Brownian motion.- 1.5. P. Levy's construction.- 1.6. Strict Markov character.- 1.7. Passage times for the standard Brownian motion.- Note l: Homogeneous differential processes with increasing paths.- 1.8. Kolmogorov's test and the law of the iterated logarithm.- 1.9. P. Levy's Hoelder condition.- 1.10. Approximating the Brownian motion by a random walk.- 2. Brownian local times.- 2.1. The reflecting Brownian motion.- 2.2. P. Levy's local time.- 2.3. Elastic Brownian motion.- 2.4. t+ and down-crossings.- 2.5. T+ as Hausdorff-Besicovitch 1/2-dimensional measure.- Note 1: Submartingales.- Note 2: Hausdorff measure and dimension.- 2.6. Kac's formula for Brownian functionals.- 2.7. Bessel processes.- 2.8. Standard Brownian local time.- 2.9. BrowNian excursions.- 2.10. Application of the Bessel process to Brownian excursions.- 2.11. A time substitution.- 3. The general 1-dimensional diffusion.- 3.1. Definition.- 3.2. Markov times.- 3.3. Matching numbers.- 3.4. Singular points.- 3.5. Decomposing the general diffusion into simple pieces.- 3.6. Green operators and the space D.- 3.7. Generators.- 3.8. Generators continued.- 3.9. Stopped diffusion.- 4. Generators.- 4.1. A general view.- 4.2. G as local differential operator: conservative non-singular case.- 4.3. G as local differential operator: general non-singular case.- 4.4. A second proof.- 4.5. G at an isolated singular point.- 4.6. Solving G*u = ? u.- 4.7. G as global differential operator: non-singular case.- 4.8. G on the shunts.- 4.9. G as global differential operator: singular case.- 4.10. Passage times.- Note 1: Differential processes with increasing paths.- 4.11. Eigen-differential expansions for Green functions and transition densities.- 4.12. Kolmogorov's test.- 5. Time changes and killing.- 5.1. Construction of sample paths: a general view.- 5.2. Time changes: Q = R1.- 5.3. Time changes: Q = [0, + ?).- 5.4. Local times.- 5.5. Subordination and chain rule.- 5.6. Killing times.- 5.7. Feller's Brownian motions.- 5.8. Ikeda's example.- 5.9. Time substitutions must come from local time integrals.- 5.10. Shunts.- 5.11. Shunts with killing.- 5.12. Creation of mass.- 5.13. A parabolic equation.- 5.14. Explosions.- 5.15. A non-linear parabolic equation.- 6. Local and inverse local times.- 6.1. Local and inverse local times.- 6.2. Levy measures.- 6.3. t and the intervals of [0, + ?) - ?.- 6.4. A counter example: t and the intervals of [0, + ?) - ?.- 6.5a t and downcrossings.- 6.5b t as Hausdorff measure.- 6.5c t as diffusion.- 6.5d Excursions.- 6.6. Dimension numbers.- 6.7. Comparison tests.- Note 1: Dimension numbers and fractional dimensional capacities.- 6.8. An individual ergodic theorem.- 7. Brownian motion in several dimensions.- 7.1. Diffusion in several dimensions.- 7.2. The standard Brownian motion in several dimensions.- 7.3. Wandering out to ?.- 7.4. Greenian domains and Green functions.- 7.5. Excessive functions.- 7.6. Application to the spectrum of ?/2.- 7.7. Potentials and hitting probabilities.- 7.8. Newtonian capacities.- 7.9. Gauss's quadratic form.- 7.10. Wiener's test.- 7.11. Applications of Wiener's test.- 7.12. Dirichlet problem.- 7.13. Neumann problem.- 7.14. Space-time Brownian motion.- 7.15. Spherical Brownian motion and skew products.- 7.16. Spinning.- 7.17. An individual ergodic theorem for the standard 2-dimensional BROWNian motion.- 7.18. Covering Brownian motions.- 7.19. Diffusions with Brownian hitting probabilities.- 7.20. Right-continuous paths.- 7.21. Riesz potentials.- 8. A general view of diffusion in several dimensions.- 8.1. Similar diffusions.- 8.2. G as differential operator.- 8.3. Time substitutions.- 8.4. Potentials.- 8.5. Boundaries.- 8.6. Elliptic operators.- 8.7. Feller's little boundary and tail algebras.- List of notations.
by "Nielsen BookData"