Nilpotent Lie algebras
Author(s)
Bibliographic Information
Nilpotent Lie algebras
(Mathematics and its applications, v. 361)
Kluwer Academic, c1996
- : hardcover
Available at 24 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
hardcoverGOZ||1||196013514
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Nilpotent Ue algebras have played an Important role over the last ye!US : either In the domain at Algebra when one considers Its role In the classlftcation problems of Ue algebras, or In the domain of geometry since one knows the place of nilmanlfolds In the Illustration, the description and representation of specific situations. The first fondamental results In the study of nilpotent Ue algebras are obvlsouly, due to Umlauf. In his thesis (leipZig, 1991), he presented the first non trlvlal classifications. The systematic study of real and complex nilpotent Ue algebras was Independently begun by D1xmler and Morozov. Complete classifications In dimension less than or equal to six were given and the problems regarding superior dimensions brought to light, such as problems related to the existence from seven up, of an infinity of non Isomorphic complex nilpotent Ue algebras. One can also find these losts (for complex and real algebras) In the books about differential geometry by Vranceanu. A more formal approach within the frame of algebraiC geometry was developed by Michele Vergne.
The variety of Ue algebraiC laws Is an affine algebraic subset In this view the role variety and the nilpotent laws constitute a Zarlski's closed of Irreduclbl~ components appears naturally as well the determination or estimate of their numbers. Theoritical physiCiSts, Interested In the links between diverse mechanics have developed the Idea of contractions of Ue algebras (Segal, Inonu, Wlgner). That Idea was In fact very convenient In the determination of components.
Table of Contents
Preface. 1. Lie Algebras. Generalities. 2. Some Classes of Nilpotent Lie Algebras. 3. Cohomology of Lie Algebras. 4. Cohomology of Some Nilpotent Lie Algebras. 5. The Algebraic Variety of the Laws of Lie Algebras. 6. Variety of Nilpotent Lie Algebras. 7. Characteristically Nilpotent Lie Algebras. 8. Applications to Differential Geometry. The Nilmanifolds. Bibliography. Index.
by "Nielsen BookData"