Entropy generation minimization : the method of thermodynamic optimization of finite-size systems and finite-time processes
著者
書誌事項
Entropy generation minimization : the method of thermodynamic optimization of finite-size systems and finite-time processes
(Advanced topics in mechanical engineering series / series editor, Frank A. Kulacki)
CRC Press, c1996
大学図書館所蔵 件 / 全28件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and indexes
内容説明・目次
内容説明
This book presents the diverse and rapidly expanding field of Entropy Generation Minimization (EGM), the method of thermodynamic optimization of real devices. The underlying principles of the EGM method - also referred to as "thermodynamic optimization," "thermodynamic design," and "finite time thermodynamics" - are thoroughly discussed, and the method's applications to real devices are clearly illustrated.
The EGM field has experienced tremendous growth during the 1980s and 1990s. This book places EGM's growth in perspective by reviewing both sides of the field - engineering and physics. Special emphasis is given to chronology and to the relationship between the more recent work and the pioneering work that outlined the method and the field.
Entropy Generation Minimization combines the fundamental principles of thermodynamics, heat transfer, and fluid mechanics. EGM applies these principles to the modeling and optimization of real systems and processes that are characterized by finite size and finite time constraints, and are limited by heat and mass transfer and fluid flow irreversibilities.
Entropy Generation Minimization provides a straightforward presentation of the principles of the EGM method, and features examples that elucidate concepts and identify recent EGM advances in engineering and physics. Modern advances include the optimization of storage by melting and solidification; heat exchanger design; power from hot-dry-rock deposits; the on & off operation of defrosting refrigerators and power plants with fouled heat exchangers; the production of ice and other solids; the maximization of power output in simple power plant models with heat transfer irreversibilities; the minimization of refrigerator power input in simple models; and the optimal collection and use of solar energy.
目次
(Chapter Titles)
Thermodynamics Concepts and Laws
Entropy Generation and Exergy Destruction
Entropy Generation in Fluid Flow
Entropy Generation in Heat Transfer
Heat Exchangers
Insulation Systems
Storage Systems
Power Generation
Solar-Thermal Power Generation
Refrigeration
Time-Dependent Operation
Appendices: Local Entropy Generation Rate. Variational Calculus.
Author Index
Subject Index
「Nielsen BookData」 より