Computational learning and probabilistic reasoning
Author(s)
Bibliographic Information
Computational learning and probabilistic reasoning
Wiley, c1996
Available at 24 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Description and Table of Contents
Description
Providing a unified coverage of the latest research and applications methods and techniques, this book is devoted to two interrelated techniques for solving some important problems in machine intelligence and pattern recognition, namely probabilistic reasoning and computational learning. The contributions in this volume describe and explore the current developments in computer science and theoretical statistics which provide computational probabilistic models for manipulating knowledge found in industrial and business data. These methods are very efficient for handling complex problems in medicine, commerce and finance. Part I covers Generalisation Principles and Learning and describes several new inductive principles and techniques used in computational learning. Part II describes Causation and Model Selection including the graphical probabilistic models that exploit the independence relationships presented in the graphs, and applications of Bayesian networks to multivariate statistical analysis. Part III includes case studies and descriptions of Bayesian Belief Networks and Hybrid Systems. Finally, Part IV on Decision-Making, Optimization and Classification describes some related theoretical work in the field of probabilistic reasoning. Statisticians, IT strategy planners, professionals and researchers with interests in learning, intelligent databases and pattern recognition and data processing for expert systems will find this book to be an invaluable resource. Real-life problems are used to demonstrate the practical and effective implementation of the relevant algorithms and techniques.
Table of Contents
Partial table of contents:
GENERALISATION PRINCIPLES AND LEARNING.
Structure of Statistical Learning Theory (V. Vapnik).
MML Inference of Predictive Trees, Graphs and Nets (C.Wallace).
Probabilistic Association and Denotation in Machine Learning ofNatural Language (P. Suppes & L. Liang).
CAUSATION AND MODEL SELECTION.
Causation, Action, and Counterfactuals (J. Pearl).
Efficient Estimation and Model Selection in Large Graphical Models(D. Wedelin).
BAYESIAN BELIEF NETWORKS AND HYBRID SYSTEMS.
Bayesian Belief Networks and Patient Treatment (L. Meshalkin &E. Tsybulkin).
DECISION-MAKING, OPTIMIZATION AND CLASSIFICATION.
Axioms for Dynamic Programming (P. Shenoy).
Extreme Values of Functionals Characterizing Stability ofStatistical Decisions (A. Nagaev).
Index.
by "Nielsen BookData"