The Stokes phenomenon and Hilbert's 16th problem, Groningen, The Netherlands, 31 May - 3 June 1995
著者
書誌事項
The Stokes phenomenon and Hilbert's 16th problem, Groningen, The Netherlands, 31 May - 3 June 1995
World Scientific, c1996
大学図書館所蔵 全25件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
The 16th Problem of Hilbert is one of the most famous remaining unsolved problems of mathematics. It concerns whether a polynomial vector field on the plane has a finite number of limit cycles. There is a strong connection with divergent solutions of differential equations, where a central role is played by the Stokes Phenomenon, the change in asymptotic behaviour of the solutions in different sectors of the complex plane.The contributions to these proceedings survey both of these themes, including historical and modern theoretical points of view. Topics covered include the Riemann-Hilbert problem, Painleve equations, nonlinear Stokes phenomena, and the inverse Galois problem.
目次
- Non-accumulation of limit cycles - revisiting and simplyifyng a former proof
- followed by construction of a summit-crossing "central trajectory" at semihyperbolic points, J. Ecalle
- finiteness theorems for limit cycles - functional cochains, bifurcations and zeros of Abelian integrals, Y. Il'yashenko
- introduction to Hilbert's 16th problem, J.-P. Ramis
- isoresurgent deformations, J. Ecalle
- isomonodromy deformations and connection formulae for Painleve transcendents, A.R. Its
- monodromy groups of regular systems on CP1 and their invariants, V. Kostov
- Galois groups for difference equations, M. van der Put
- a differential analog of Abhyabkar's conjecture - some analogies between Stokes phenomena and wild ramification, J.-P. Ramis
- Stokes phenomena in two dimensions, C. Sabbah
- the inverse Galois problem for differential equations, M. Singer
- algorithmic approach of the multisummation of formal power series solutions of linear ODE, applied to the Stokes phenomena, J. Thomann
- and other papers.
「Nielsen BookData」 より