An introduction to the analysis of algorithms
著者
書誌事項
An introduction to the analysis of algorithms
Addison-Wesley, c1996
- タイトル別名
-
Analysis of algorithms
大学図書館所蔵 全34件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book is a thorough overview of the primary techniques and models used in the mathematical analysis of algorithms. The first half of the book draws upon classical mathematical material from discrete mathematics, elementary real analysis, and combinatorics; the second half discusses properties of discrete structures and covers the analysis of a variety of classical sorting, searching, and string processing algorithms.
目次
1. Analysis of Algorithms.
Why Analyze an Algorithm?
Computational Complexity.
Analysis of Algorithms.
Average-Case Analysis.
Example: Analysis of Quicksort.
Asymptotic Approximations.
Distributions.
Probabilistic Algorithms.
2. Recurrence Relations.
Basic Properties.
First-Order Recurrences.
Nonlinear First-Order Recurrences.
Higher-Order Recurrences.
Methods for Solving Recurrences.
Binary Divide-and-Conquer Recurrences and Binary Numbers.
General Divide-and-Conquer Recurrences.
3. Generating Functions.
Ordinary Generating Functions.
Exponential Generating Functions.
Generating Function Solution of Recurrences.
Expanding Generating Functions.
Transformations with Generating Functions.
Functional Equations on Generating Functions.
Solving the Quicksort Median-of-Three.
Recurrence with OGFs.
Counting with Generating Functions.
The Symbolic Method.
Lagrange Inversion.
Probability Generating Functions.
Bivariate Generating Functions.
Special Functions.
4. Asymptotic Approximations.
Notation for Asymptotic Approximations.
Asymptotic Expansions.
Manipulating Asymptotic Expansions.
Asymptotic Approximations of Finite Sums.
Euler-Maclaurin Summation.
Bivariate Asymptotics.
Laplace Method.
"Normal" Examples from the Analysis of Algorithms.
"Poisson" Examples from the Analysis of Algorithms.
Generating Function Asymptotics.
5. Trees.
Binary Trees.
Trees and Forests.
Properties of Trees.
Tree Algorithms.
Binary Search Trees.
Average Path Length in Catalan Trees.
Path Length in Binary Search Trees.
Additive Parameters of Random Trees.
Height.
Summary of Average-Case Results on Properties of Trees.
Representations of Trees and Binary Trees.
Unordered Trees.
Labelled Trees.
Other Types of Trees.
6. Permutations.
Basic Properties of Permutations.
Algorithms on Permutations.
Representations of Permutations.
Enumeration Problems.
Analyzing Properties of Permutations with CGFs.
Inversions and Insertion Sorts.
Left-to-Right Minima and Selection Sort.
Cycles and In Situ Permutation.
Extremal Parameters.
7. Strings and Tries.
String Searching.
Combinatorial Properties of Bitstrings.
Regular Expressions.
Finite-State Automata and Knuth-Morris-Pratt Algorithm.
Context-Free Grammars.
Tries.
Trie Algorithms.
Combinatorial Properties of Tries.
Larger alphabets.
8. Words and Maps.
Hashing with Separate Chaining.
Basic Properties of Words.
Birthday Paradox and Coupon Collector Problem.
Occupancy Restrictions and Extremal Parameters.
Occupancy Distributions.
Open Addressing Hashing.
Maps.
Integer Factorization and Maps. 020140009XT04062001
「Nielsen BookData」 より