Minkowski geometry
著者
書誌事項
Minkowski geometry
(Encyclopedia of mathematics and its applications / edited by G.-C. Rota, v. 63)
Cambridge University Press, 1996
大学図書館所蔵 全105件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliographical references: p. 313-330
Includes notation, author and subject indexes
内容説明・目次
内容説明
Minkowski geometry is a type of non-Euclidean geometry in a finite number of dimensions in which distance is not 'uniform' in all directions. This book presents the first comprehensive treatment of Minkowski geometry since the 1940s. The author begins by describing the fundamental metric properties and the topological properties of existence of Minkowski space. This is followed by a treatment of two-dimensional spaces and characterisations of Euclidean space among normed spaces. The central three chapters present the theory of area and volume in normed spaces, a fascinating geometrical interplay among the various roles of the ball in Euclidean space. Later chapters deal with trigonometry and differential geometry in Minkowski spaces. The book ends with a brief look at J. J. Schaffer's ideas on the intrinsic geometry of the unit sphere. Minkowski Geometry will appeal to students and researchers interested in geometry, convexity theory and functional analysis.
目次
- 1. The algebraic properties of linear spaces and of convex sets
- 2. Norms and norm topologies
- 3. Convex bodies
- 4. Comparisons and contrasts with Euclidean space
- 5. Two dimensional Minkowski spaces
- 6. The concept of area and content
- 7. Special properties of the Holmes-Thompson definition
- 8. Special properties of the Busemann definition
- 9. Trigonometry
- 10. Various numerical parameters.
「Nielsen BookData」 より