Chaos and noise
著者
書誌事項
Chaos and noise
(Springer series in synergetics, v. 52 . Foundations of synergetics ; 2)
Springer-Verlag, c1996
2nd rev. and enl. ed
- : gw
- タイトル別名
-
Foundations of synergetics II
大学図書館所蔵 全46件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
1st edition ISBN 3-540-53448-2 TR:Complex patterns , 1991
Includes bibliographical references and index
内容説明・目次
内容説明
The second edition of this volume has been extensively revised. A different version of Chap. 7, reflecting recent significant progress in understanding of spatiotempo- ral chaos, is now provided. Much new material has been included in the sections dealing with intermittency in birth-death models and noise-induced phase transi- tions. A new section on control of chaotic behavior has been added to Chap. 6. The subtitle of the volume has been changed to better reflect its contents. We acknowledge stimulating discussions with H. Haken and E. Scholl and are grateful to our colleagues M. Bar, D. Battogtokh, M. Eiswirth, M. Hildebrand, K. Krischer, and V. Tereshko for their comments and assistance. We thank M. Lubke for her help in producing new figures for this volume. Berlin and Moscow A. s. Mikhailov April 1996 A. Yu. Loskutov Preface to the First Edition This textbook is based on a lecture course in synergetics given at the University of Moscow. In this second of two volumes, we discuss the emergence and properties of complex chaotic patterns in distributed active systems.
Such patterns can be produced autonomously by a system, or can result from selective amplification of fluctuations caused by external weak noise.
目次
1. Introduction.- 1.1 Chaotic Dynamics.- 1.2 Noise-Induced Complex Patterns.- 1.3 Chaos, Noise, and Self-Organization.- 2. Unpredictable Dynamics.- 2.1 Hamiltonian Systems.- 2.2 Destruction of Tori.- 2.3 Ergodicity and Mixing.- 3. Strange Attractors.- 3.1 Dissipative Systems and Their Attractors.- 3.2 The Lorenz Model.- 3.3 Lyapunov Exponents.- 3.4 The Autocorrelation Function.- 4. Fractals.- 4.1 Self-Similar Patterns.- 4.2 Fractal Dimensions.- 4.3 Dimensions of Strange Attractors and Fractal Basin Boundaries.- 5. Iterative Maps.- 5.1 Fixed Points and Cycles.- 5.2 Chaotic Maps.- 5.3 Feigenbaum Universality.- 6. Routes to Temporal Chaos.- 6.1 Bifurcations.- 6.2 The Ruelle-Takens Scenario.- 6.3 Period Doubling.- 6.4 Intermittency.- 6.5 Controlling Chaotic Behavior.- 7. Spatiotemporal Chaos.- 7.1 Analysis of Time Series.- 7.2 Turbulence in Distributed Active Systems.- 7.3 Coupled Chaotic Maps.- 7.4 The Complex Ginzburg-Landau Equation.- 7.5 Statistics of Defects.- 7.6 Transient Turbulence.- 8. Random Processes.- 8.1 Probabilistic Automata.- 8.2 Continuous Random Processes.- 8.3 The Fokker-Planck Equation.- 9. Active Systems with Noise.- 9.1 Generalized Brownian Motion.- 9.2 Internal Noise.- 9.3 Optimal Fluctuations and Transition Probabilities.- 10. Birth-Death Systems.- 10.1 Stochastic Birth-Death Models.- 10.2 The Ignition Problem.- 10.3 Spatiotemporal Intermittency in Population Explosions.- 10.4 Explosions in Media with Random Breeding Centers.- 11. Extinction and Complex Relaxation.- 11.1 Diffusion with Random Traps.- 11.2 Irreversible Annihilation.- 11.3 Conserved Quantities and Long-Time Relaxation.- 11.4 Stochastic Segregation.- 12. Nonequilibrium Phase Transitions.- 12.1 Second-Order Phase Transitions.- 12.2 Sweeping Through the Critical Region.- 12.3 The Biased Transition.- 12.4 Medium-Populating Transitions.- 12.5 Noise-Induced Phase Transitions: Competition and Coexistence in the Fluctuating Environment.- References.
「Nielsen BookData」 より