A course in stochastic processes : stochastic models and statistical inference
著者
書誌事項
A course in stochastic processes : stochastic models and statistical inference
(Theory and decision library, Series B . Mathematical and statistical methods ; v. 34)
Kluwer Academic Pub., c1996
大学図書館所蔵 全29件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 313-314) and index
内容説明・目次
内容説明
This text is an Elementary Introduction to Stochastic Processes in discrete and continuous time with an initiation of the statistical inference. The material is standard and classical for a first course in Stochastic Processes at the senior/graduate level (lessons 1-12). To provide students with a view of statistics of stochastic processes, three lessons (13-15) were added. These lessons can be either optional or serve as an introduction to statistical inference with dependent observations. Several points of this text need to be elaborated, (1) The pedagogy is somewhat obvious. Since this text is designed for a one semester course, each lesson can be covered in one week or so. Having in mind a mixed audience of students from different departments (Math ematics, Statistics, Economics, Engineering, etc.) we have presented the material in each lesson in the most simple way, with emphasis on moti vation of concepts, aspects of applications and computational procedures. Basically, we try to explain to beginners questions such as "What is the topic in this lesson?" "Why this topic?", "How to study this topic math ematically?". The exercises at the end of each lesson will deepen the stu dents' understanding of the material, and test their ability to carry out basic computations. Exercises with an asterisk are optional (difficult) and might not be suitable for homework, but should provide food for thought.
目次
Preface. 1. Basic Probability Background. 2. Modeling Random Phenomena. 3. Discrete-Time Markov Chains. 4. Poisson Processes. 5. Continuous-Time Markov Chains. 6. Random Walks. 7. Renewal Theory. 8. Queueing Theory. 9. Stationary Processes. 10. ARMA model. 11. Discrete-Time Martingales. 12. Brownian Motion and Diffusion Processes. 13. Statistics for Poisson Processes. 14. Statistics of Discrete-Time Stationary Processes. 15. Statistics of Diffusion Processes. A. Measure and Integration. B. Banach and Hilbert Spaces. List of Symbols. Bibliography. Partial Solutions to Selected Exercises. Index.
「Nielsen BookData」 より