Semigroups and their subsemigroup lattices
著者
書誌事項
Semigroups and their subsemigroup lattices
(Mathematics and its applications, v. 379)
Kluwer, c1996
大学図書館所蔵 全19件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
0.1. General remarks. For any algebraic system A, the set SubA of all subsystems of A partially ordered by inclusion forms a lattice. This is the subsystem lattice of A. (In certain cases, such as that of semigroups, in order to have the right always to say that SubA is a lattice, we have to treat the empty set as a subsystem.) The study of various inter-relationships between systems and their subsystem lattices is a rather large field of investigation developed over many years. This trend was formed first in group theory; basic relevant information up to the early seventies is contained in the book [Suz] and the surveys [K Pek St], [Sad 2], [Ar Sad], there is also a quite recent book [Schm 2]. As another inspiring source, one should point out a branch of mathematics to which the book [Baer] was devoted. One of the key objects of examination in this branch is the subspace lattice of a vector space over a skew field. A more general approach deals with modules and their submodule lattices. Examining subsystem lattices for the case of modules as well as for rings and algebras (both associative and non-associative, in particular, Lie algebras) began more than thirty years ago; there are results on this subject also for lattices, Boolean algebras and some other types of algebraic systems, both concrete and general. A lot of works including several surveys have been published here.
目次
Preface. Part A: Semigroups with Certain Types of Subsemigroup Lattices. I. Preliminaries. II. Semigroups with Modular or Semimodular Subsemigroup Lattices. III. Semigroups with Complementable Subsemigroups. IV. Finiteness Conditions. V. Inverse Semigroups with Certain Types of Lattices of Inverse Subsemigroups. VI. Inverse Semigroups with Certain Types of Lattices of Full Inverse Subsemigroups. Part B: Properties of Subsemigroup Lattices. VII. Lattice Characteristics of Classes of Semigroups. VIII. Embedding Lattices in Subsemigroup Lattices. Part C: Lattice Isomorphisms. IX. Preliminaries on Lattice Isomorphisms. X. Cancellative Semigroups. XI. Commutative Semigroups. XII. Semigroups Decomposable into Rectangular Bands. XIII. Semigroups Defined by Certain Presentations. XIV. Inverse Semigroups. Bibliography. Index. List of Notations. List of Subsections Containing Unsolved Problems or Open Questions.
「Nielsen BookData」 より