Differential forms : a complement to vector calculus
著者
書誌事項
Differential forms : a complement to vector calculus
Academic Press, c1997
大学図書館所蔵 件 / 全11件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes index
内容説明・目次
内容説明
This text is one of the first to treat vector calculus using differential forms in place of vector fields and other outdated techniques. Geared towards students taking courses in multivariable calculus, this innovative book aims to make the subject more readily understandable. Differential forms unify and simplify the subject of multivariable calculus, and students who learn the subject as it is presented in this book should come away with a better conceptual understanding of it than those who learn using conventional methods.
目次
Differential Forms
The Algrebra of Differential Forms
Exterior Differentiation
The Fundamental Correspondence
Oriented Manifolds
The Notion Of A Manifold (With Boundary)
Orientation
Differential Forms Revisited
l-Forms
K-Forms
Push-Forwards And Pull-Backs
Integration Of Differential Forms Over Oriented Manifolds
The Integral Of A 0-Form Over A Point (Evaluation)
The Integral Of A 1-Form Over A Curve (Line Integrals)
The Integral Of A2-Form Over A Surface (Flux Integrals)
The Integral Of A 3-Form Over A Solid Body (Volume Integrals)
Integration Via Pull-Backs
The Generalized Stokes' Theorem
Statement Of The Theorem
The Fundamental Theorem Of Calculus And Its Analog For Line Integrals
Green's And Stokes' Theorems
Gauss's Theorem
Proof of the GST
For The Advanced Reader
Differential Forms In IRN And Poincare's Lemma
Manifolds, Tangent Vectors, And Orientations
The Basics of De Rham Cohomology
Appendix
Answers To Exercises
Subject Index
「Nielsen BookData」 より