U-statistics in Banach spaces
著者
書誌事項
U-statistics in Banach spaces
VSP, 1996
大学図書館所蔵 全7件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical reference (p. 385-417) and index
内容説明・目次
内容説明
01/07 This title is now available from Walter de Gruyter. Please see www.degruyter.com for more information.
U-statistics are universal objects of modern probabilistic summation theory. They appear in various statistical problems and have very important applications. The mathematical nature of this class of random variables has a functional character and, therefore, leads to the investigation of probabilistic distributions in infinite-dimensional spaces. The situation when the kernel of a U-statistic takes values in a Banach space, turns out to be the most natural and interesting.
In this book, the author presents in a systematic form the probabilistic theory of U-statistics with values in Banach spaces (UB-statistics), which has been developed to date. The exposition of the material in this book is based around the following topics:
algebraic and martingale properties of U-statistics; inequalities; law of large numbers; the central limit theorem; weak convergence to a Gaussian chaos and multiple stochastic integrals; invariance principle and functional limit theorems; estimates of the rate of weak convergence; asymptotic expansion of distributions; large deviations; law of iterated logarithm; dependent variables; relation between Banach-valued U-statistics and functionals from permanent random measures.
目次
Preface
Introduction
1. BASIC DEFINITIONS
One sample UB-statistics
Multisample UB-statistics
Von Mises' statistics
Banach-valued symmetric statistics
Permanent symmetric statistics
Multiple stochastic integrals
B-valued polynomial chaos
2. INEQUALITIES
Inequalities based on the Hoeffding formula
Martingale moment inequalities
Maximal inequalities
Contraction and symmetrization inequalities
Decoupling inequalities
Hypercontractive method in moment inequalities
Moment inequalities in Banach spaces of type p
3. LAW OF LARGE NUMBERS
One-sample UB-statistics
Multi-sample UB-statistics
Von Mises' statistics
Estimates of convergence rates
4. WEAK CONVERGENCE
Central limit theorem
Convergence to a chaos
Multi-sample UB-statistics
Poisson approximation
Stable approximation
Approximation with increasing degrees
Symmetric statistics
U-statistics with varying kernels
Weighted U-statistics
5. FUNCTIONAL LIMIT THEOREMS
Non-degenerate kernels
Degenerate kernels
Weak convergence to a chaos process
Weak convergence in the Poisson approximation scheme
Invariance principle for symmetric statistics
Functional limit theorems with varying kernels
Weak convergence of U-processes
6. APPROXIMATION ESTIMATES
General methods of estimation
Rate of normal approximation of UR-statistics
Estimates with increasing degree
Nonuniform estimates
Rate of chaos approximation
Normal approximation of UH-statistics
Multi-sample UH-statistics
Estimates in central limit theorem
Rate of Poisson approximation
7. ASYMPTOTIC EXPANSIONS
Expansions for non-degenerate UR-statistics
General method of expansions
Expansions with canonical kernels
Expansions with arbitrary kernels
8. LARGE DEVIATIONS
Exponential inequalities
Moderate deviations
Power zones of normal convergence
Probabilities of large deviations for UH-statistics
9. LAW OF ITERATED LOGARITHM
UR-statistics
UH-statistics
Bounded LIL
Compact LIL
Functional LIL
Multisample UB-statistics
10. DEPENDENT VARIABLES
Symmetrically dependent random variables
Weakly dependent random variables
Bootstrap variables
Order statistics
Bibliographical supplements and comments
Bibliography
Index
「Nielsen BookData」 より