A modern approach to probability theory
Author(s)
Bibliographic Information
A modern approach to probability theory
(Probability and its applications)
Birkhäuser, c1997
- : us : hbk
- : sz : hbk
Available at 48 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: us, hbkFRI||36||196075184
Note
Includes bibliographical references and index
Description and Table of Contents
- Volume
-
: us : hbk ISBN 9780817638078
Description
Students and teachers of mathematics and related fields will find this book a comprehensive and modern approach to probability theory, providing the background and techniques to go from the beginning graduate level to the point of specialization in research areas of current interest. The book is designed for a two- or three-semester course, assuming only courses in undergraduate real analysis or rigorous advanced calculus, and some elementary linear algebra. A variety of applications-Bayesian statistics, financial mathematics, information theory, tomography, and signal processing-appear as threads to both enhance the understanding of the relevant mathematics and motivate students whose main interests are outside of pure areas.
Table of Contents
List of Tables * Preface * Part I: Probability Spaces, Random Variables, and Expectations * Probability Spaces * Random Variables * Distribution Functions * Expectations: Theory * Expectations: Applications * Calculating Probabilities and Measures * Measure Theory: Existence and Uniqueness * Integration Theory * Part 2: Independence and Sums * Stochastic Independence * Sums of Independent Random Variables * Random Walk * Theorems of A.S. Convergence * Characteristic Functions * Part 3: Convergence in Distribution * Convergence in Distribution on the Real Line * Distributional Limit Theorems for Partial Sums * Infinitely Divisible and Stable Distributions as Limits * Convergence in Distribution on Polish Spaces * The Invariance Principle and Brownian Motion * Part 4: Conditioning * Spaces of Random Variables * Conditional Probabilities * Construction of Random Sequences * Conditional Expectations * Part 5: Random Sequences * Martingales * Renewal Sequences * Time-homogeneous Markov Sequences * Exchangeable Sequences * Stationary Sequences * Part 6: Stochastic Processes * Point Processes * Diffusions and Stochastic Calculus * Applications of Stochastic Calculus * Part 7: Appendices * Appendix A. Notation and Usage of Terms * Appendix B. Metric Spaces * Appendix C. Topological Spaces * Appendix D. Riemann-Stieltjes Integration * Appendix E. Taylor Approximations, C-Valued Logarithms * Appendix F. Bibliography * Appendix G. Comments and Credits * Index
- Volume
-
: sz : hbk ISBN 9783764338077
Description
This textbok is designed for graduate students in probability theory. It merges measure theory with probability theory, and rather than deal only with "random variables" it also looks at "random objects". There is a chapter of introductory material for advanced topics, as well as over 1000 exercises, ranging from gambling theory to concrete calculations involving random sets. All of the problems in the exercises are designed to help students get beyond mere rote learning of theorems and proofs to a deep intuitive feel for the far-reaching implications of the theory. Solutions are provided for approximately a quarter of the exercises.
by "Nielsen BookData"