Best approximation by linear superpositions (approximate nomography)

著者

書誌事項

Best approximation by linear superpositions (approximate nomography)

S.Ya. Khavinson ; [translated by D. Khavinson from an original Russian manuscript]

(Translations of mathematical monographs, v. 159)

American Mathematical Society, c1997

タイトル別名

Наилучшее приближение линейными суперпозициями (аппроксимативная номография)

Nailuchshee priblizhenie lineĭnymi superpozit︠s︡ii︠a︡mi (approksimativnai︠a︡ nomografii︠a︡)

大学図書館所蔵 件 / 39

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 169-175)

内容説明・目次

内容説明

This book deals with problems of approximation of continuous or bounded functions of several variables by linear superposition of functions that are from the same class and have fewer variables. The main topic is the space of linear superpositions $D$ considered as a subspace of the space of continuous functions $C(X)$ on a compact space $X$. Such properties as density of $D$ in $C(X)$, its closedness, proximality, etc. are studied in great detail. The approach to these and other problems based on duality and the Hahn-Banach theorem is emphasized. Also, considerable attention is given to the discussion of the Diliberto-Straus algorithm for finding the best approximation of a given function by linear superpositions.

目次

Discussing Kolmogorov's theorem Approximation of functions of two variables by sums $\varphi (X) + \psi (y)$ Problems of approximation by linear superpositions References.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA29210111
  • ISBN
    • 0821804227
  • LCCN
    96036520
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 原本言語コード
    rus
  • 出版地
    Providence, R.I.
  • ページ数/冊数
    vii, 175 p.
  • 大きさ
    27 cm
  • 分類
  • 親書誌ID
ページトップへ