Mathematical models for structural reliability analysis
著者
書誌事項
Mathematical models for structural reliability analysis
(CRC mathematical modelling series)
CRC Press, c1996
大学図書館所蔵 全12件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Mathematical Models for Structural Reliability Analysis offers mathematical models for describing load and material properties in solving structural engineering problems. Examples are provided, demonstrating how the models are implemented, and the limitations of the models are clearly stated. Analytical solutions are also discussed, and methods are clearly distinguished from models. The authors explain both theoretical models and practical applications in a clear, concise, and readable fashion.
目次
Stochastic Process Models (F. Casciati and M. Di Paola)IntroductionThe Orthogonal-Increment ModelThe Correlation-Stationary Model Time-Invariant Linear Systems Models of Common UseThe Evolutionary Model Time-Invariant Linear SystemsMarkov Processes A Model of Common Use Ito Stochastic Differential Equation Some Examples Approximation of Mechanical Processes: Physical versus Ito EquationsThe Random Pulse Train Model The Delta-Correlated Model Fokker Planck and Moment Equations for Parametric Delta Correlated Input Quasi-Linear Systems Simulation of Delta Correlated Processes and Response Simulation of Normal White Noise Input and Response Orthogonal-Increment Model for Delta Correlated ProcessesMultidegree-of-Freedom Systems Under Parametric Delta Correlated Input Moment Equation Approach for MDOF Systems Simulation of Multivariate Delta Correlated Processes and ResponseConclusions and ReferencesAppendix Characterization of Random Variables Joint Characterization of Random Variables Operation on Stochastic Processes Kronecker Algebra: Some FundamentalsDimension Reduction and Discretization in Stochastic Problems by Regression Method (O. Ditlevsen)IntroductionLinear RegressionNormal DistributionNon-Gaussian Distributions and Linear RegressionMarginally Transformed Gaussian Processes and FieldsDiscretized Fields Defined by Linear Regression on a Finite Set of Field ValuesDiscretization Defined by Linear Regression on a Finite Set of Linear FunctionalsPoisson Load Field ExampleStochastic Finite Element Methods and Reliability CalculationsClassical versus Statistical-Stochastic Interpolation Formulated on the Basis of the Principle of Maximum LikelihoodComputational Practicability of the Statistical-Stochastic Interpolation MethodField Modeling on the Basis of Measured Noisy DataDiscretization Defined by L
「Nielsen BookData」 より