Sheaf theory
著者
書誌事項
Sheaf theory
(Graduate texts in mathematics, 170)
Springer, c1997
2nd ed
大学図書館所蔵 全115件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 487-490) and index
内容説明・目次
内容説明
Primarily concerned with the study of cohomology theories of general topological spaces with "general coefficient systems", the parts of sheaf theory covered here are those areas important to algebraic topology. Among the many innovations in this book, the concept of the "tautness" of a subspace is introduced and exploited; the fact that sheaf theoretic cohomology satisfies the homotopy property is proved for general topological spaces; and relative cohomology is introduced into sheaf theory. A list of exercises at the end of each chapter helps students to learn the material, and solutions to many of the exercises are given in an appendix. This new edition of a classic has been substantially rewritten and now includes some 80 additional examples and further explanatory material, as well as new sections on Cech cohomology, the Oliver transfer, intersection theory, generalised manifolds, locally homogeneous spaces, homological fibrations and p- adic transformation groups. Readers should have a thorough background in elementary homological algebra and in algebraic topology.
目次
- I Sheaves and Presheaves.- Definitions.- 2 Homomorphisms, subsheaves, and quotient sheaves.- 3 Direct and inverse images.- 4 Cohomomorphisms.- 5 Algebraic constructions.- 6 Supports.- 7 Classical cohomology theories.- Exercises.- II Sheaf Cohomology.- 1 Differential sheaves and resolutions.- 2 The canonical resolution and sheaf cohomology.- 3 Injective sheaves.- 4 Acyclic sheaves.- 5 Flabby sheaves.- 6 Connected sequences of functors.- 7 Axioms for cohomology and the cup product.- 8 Maps of spaces.- 9 ?-soft and ?-fine sheaves.- 10 Subspaces.- 11 The Vietoris mapping theorem and homotopy invariance.- 12 Relative cohomology.- 13 Mayer-Vietoris theorems.- 14 Continuity.- 15 The Kunneth and universal coefficient theorems.- 16 Dimension.- 17 Local connectivity.- 18 Change of supports
- local cohomology groups.- 19 The transfer homomorphism and the Smith sequences.- 20 Steenrod's cyclic reduced powers.- 21 The Steenrod operations.- Exercises.- III Comparison with Other Cohomology Theories.- 1 Singular cohomology.- 2 Alexander-Spanier cohomology.- 3 de Rham cohomology.- 4 ?ech cohomology.- Exercises.- IV Applications of Spectral Sequences.- 1 The spectral sequence of a differential sheaf.- 2 The fundamental theorems of sheaves.- 3 Direct image relative to a support family.- 4 The Leray sheaf.- 5 Extension of a support family by a family on the base space.- 6 The Leray spectral sequence of a map.- 7 Fiber bundles.- 8 Dimension.- 9 The spectral sequences of Borel and Cartan.- 10 Characteristic classes.- 11 The spectral sequence of a filtered differential sheaf.- 12 The Fary spectral sequence.- 13 Sphere bundles with singularities.- 14 The Oliver transfer and the Conner conjecture.- Exercises.- V Borel-Moore Homology.- 1 Cosheaves.- 2 The dual of a differential cosheaf.- 3 Homology theory.- 4 Maps of spaces.- 5 Subspaces and relative homology.- 6 The Vietoris theorem, homotopy, and covering spaces.- 7 The homology sheaf of a map.- 8 The basic spectral sequences.- 9 Poincare duality.- 10 The cap product.- 11 Intersection theory.- 12 Uniqueness theorems.- 31 Uniqueness theorems for maps and relative homology.- 14 The Kunneth formula.- 15 Change of rings.- 16 Generalized manifolds.- 17 Locally homogeneous spaces.- 18 Homological fibrations and p-adic transformation groups.- 19 The transfer homomorphism in homology.- 20 Smith theory in homology.- Exercises.- VI Cosheaves and ?ech Homology.- 1 Theory of cosheaves.- 2 Local triviality.- 3 Local isomorphisms.- 4 Cech homology.- 5 The reflector.- 6 Spectral sequences.- 7 Coresolutions.- 8 Relative ?ech homology.- 9 Locally paracompact spaces.- 10 Borel-Moore homology.- 11 Modified Borel-Moore homology.- 12 Singular homology.- 13 Acyclic coverings.- 14 Applications to maps.- Exercises.- A Spectral Sequences.- 1 The spectral sequence of a filtered complex.- 2 Double complexes.- 3 Products.- 4 Homomorphisms.- B Solutions to Selected Exercises.- Solutions for Chapter I.- Solutions for Chapter II.- Solutions for Chapter III.- Solutions for Chapter IV.- Solutions for Chapter V.- Solutions for Chapter VI.- List of Symbols.- List of Selected Facts.
「Nielsen BookData」 より