Realizations of polylogarithms
著者
書誌事項
Realizations of polylogarithms
(Lecture notes in mathematics, 1650)
Springer-Verlag, c1997
大学図書館所蔵 全87件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes indexes of notations and bibliographies at each end of chapters, and index at end of volume
内容説明・目次
内容説明
Classically, higher logarithms appear as multivalued functions on the projective line. Today they can be interpreted as entries of the period matrix of a certain variation of Hodge structure, itself called the "polylogarithm". The aim of the book is to document the sheaf-theoretical foundations of the field of polylogarithms. Earlier, partly unpublished results and constructions of Beilinson, Deligne, and Levin on the classical and elliptic polylog are generalized to the context of Shimura varieties. The reader is expected to have a sound background in algebraic geometry. Large parts of the book are expository, and intended as a reference for the working mathematician. Where a self-contained exposition was not possible, the author gives references in order to make the material accessible for advanced graduate students.
目次
Mixed structures on fundamental groups.- The canonical construction of mixed sheaves on mixed shimura varieties.- Polylogarithmic extensions on mixed shimura varieties. Part I: Construction and basic properties.- Polylogarithmic extensions on mixed shimura varieties. part II: The classifical polylogarithm.- Polygogarithmic extensions on mixed shimura varieties. Part III: The elliptic polygogarithm.
「Nielsen BookData」 より