Linear programming : foundations and extensions

Bibliographic Information

Linear programming : foundations and extensions

Robert J. Vanderbei

(International series in operations research & management science, 4)

Kluwer Academic Publishers, c1996

Available at  / 27 libraries

Search this Book/Journal

Note

Includes bibliographical references and index

Description and Table of Contents

Description

This book focuses largely on constrained optimization. It begins with a substantial treatment of linear programming and proceeds to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Along the way, dynamic programming and the linear complementarity problem are touched on as well. This book aims to be the first introduction to the topic. Specific examples and concrete algorithms precede more abstract topics. Nevertheless, topics covered are developed in some depth, a large number of numerical examples worked out in detail, and many recent results are included, most notably interior-point methods. The exercises at the end of each chapter both illustrate the theory, and, in some cases, extend it. Optimization is not merely an intellectual exercise: its purpose is to solve practical problems on a computer. Accordingly, the book comes with software that implements the major algorithms studied. At this point, software for the following four algorithms is available: The two-phase simplex method The primal-dual simplex method The path-following interior-point method The homogeneous self-dual methods.GBP/LISTGBP.

Table of Contents

Preface. Part 1: Basic Theory - The Simplex Method and Duality. 1. Introduction. 2. The Simplex Method. 3. Degeneracy. 4. Efficiency of the Simplex Method. 5. Duality Theory. 6. The Simplex Method in Matrix Notation. 7. Sensitivity and Parametric Analyses. 8. Implementation Issues. 9. Problems in General Form. 10. Convex Analysis. 11. Game Theory. 12. Regression. Part 2: Network-Type Problems. 13. Network Flow Problems. 14. Applications. 15. Structural Optimization. Part 3: Interior-Point Methods. 16. The Central Path. 17. A Path-Following Method. 18. The KKT System. 19. Implementation Issues. 20. The Affine-Scaling Method. 21. The Homogeneous Self-Dual Method. Part 4: Extensions. 22. Integer Programming. 23. Quadratic Programming. 24. Convex Programming. Appendix A: Source Listings. Answers to Selected Exercises. Bibliography. Index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top