Dynamics of one-dimensional maps
Author(s)
Bibliographic Information
Dynamics of one-dimensional maps
(Mathematics and its applications, v. 407)
Kluwer, c1997
Available at 34 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
SHA||44||2(S)97022692
Note
Includes bibliographical references and index
"This is a completely revised and updated translation of the original Russian work of the same title, published by Naukova Dumka, Kiev, 1989." -- T.p. verso
Description and Table of Contents
Description
maps whose topological entropy is equal to zero (i.e., maps that have only cyeles of pe 2 riods 1,2,2 , ... ) are studied in detail and elassified. Various topological aspects of the dynamics of unimodal maps are studied in Chap ter 5. We analyze the distinctive features of the limiting behavior of trajectories of smooth maps. In particular, for some elasses of smooth maps, we establish theorems on the number of sinks and study the problem of existence of wandering intervals. In Chapter 6, for a broad elass of maps, we prove that almost all points (with respect to the Lebesgue measure) are attracted by the same sink. Our attention is mainly focused on the problem of existence of an invariant measure absolutely continuous with respect to the Lebesgue measure. We also study the problem of Lyapunov stability of dynamical systems and determine the measures of repelling and attracting invariant sets. The problem of stability of separate trajectories under perturbations of maps and the problem of structural stability of dynamical systems as a whole are discussed in Chap ter 7. In Chapter 8, we study one-parameter families of maps. We analyze bifurcations of periodic trajectories and properties of the set of bifurcation values of the parameter, in eluding universal properties such as Feigenbaum universality.
Table of Contents
Introduction. 1. Fundamental Concepts of the Theory of Dynamical Systems. Typical Examples and Some Results. 2. Elements of Symbolic Dynamics. 3. Coexistence of Periodic Trajectories. 4. Simple Dynamical Systems. 5. Topological Dynamics of Unimodal Maps. 6. Metric Aspects of Dynamics. 7. Local Stability of Invariant Sets. Structural Stability of Unimodal Maps. 8. One-Parameter Families of Unimodal Maps. References. Subject Index. Notation.
by "Nielsen BookData"