Asymptotic methods for investigating quasiwave equations of hyperbolic type
Author(s)
Bibliographic Information
Asymptotic methods for investigating quasiwave equations of hyperbolic type
(Mathematics and its applications, 402)
Kluwer Academic, c1997
- Other Title
-
Asimptoticheskie metody issledovanii︠a︡ kvazivolnovykh uravneniĭ giperbolicheskogo tipa
Available at 19 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
The theory of partial differential equations is a wide and rapidly developing branch of contemporary mathematics. Problems related to partial differential equations of order higher than one are so diverse that a general theory can hardly be built up. There are several essentially different kinds of differential equations called elliptic, hyperbolic, and parabolic. Regarding the construction of solutions of Cauchy, mixed and boundary value problems, each kind of equation exhibits entirely different properties. Cauchy problems for hyperbolic equations and systems with variable coefficients have been studied in classical works of Petrovskii, Leret, Courant, Gording. Mixed problems for hyperbolic equations were considered by Vishik, Ladyzhenskaya, and that for general two dimensional equations were investigated by Bitsadze, Vishik, Gol'dberg, Ladyzhenskaya, Myshkis, and others. In last decade the theory of solvability on the whole of boundary value problems for nonlinear differential equations has received intensive development. Significant results for nonlinear elliptic and parabolic equations of second order were obtained in works of Gvazava, Ladyzhenskaya, Nakhushev, Oleinik, Skripnik, and others. Concerning the solvability in general of nonlinear hyperbolic equations, which are connected to the theory of local and nonlocal boundary value problems for hyperbolic equations, there are only partial results obtained by Bronshtein, Pokhozhev, Nakhushev.
Table of Contents
Preface. 1. Existence Theorems for Hyperbolic Equations. 2. Periodic Solutions of the Wave Ordinary Differential Equations of Second Order. 3. Periodic Solutions of the First Class Systems. 4. Periodic Solutions of the Second Class Systems. 5. Periodic Solutions of the Second Order Integro-Differential Equations of Hyperbolic Type. 6. Hyperbolic Systems with Fast and Slow Variables and Asymptotic Methods for Solving Them. 7. Asymptotic Methods for the Second Order Partial Differential Equations of Hyperbolic Type. Bibliography. Index.
by "Nielsen BookData"