Spectral elements for transport-dominated equations
著者
書誌事項
Spectral elements for transport-dominated equations
(Lecture notes in computational science and engineering, 1)
Springer-Verlag, c1997
大学図書館所蔵 全20件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
In the last few years there has been a growing interest in the development of numerical techniques appropriate for the approximation of differential model problems presenting multiscale solutions. This is the case, for instance, with functions displaying a smooth behavior, except in certain regions where sudden and sharp variations are localized. Typical examples are internal or boundary layers. When the number of degrees of freedom in the discretization process is not sufficient to ensure a fine resolution of the layers, some stabilization procedures are needed to avoid unpleasant oscillatory effects, without adding too much artificial viscosity to the scheme. In the field of finite elements, the streamline diffusion method, the Galerkin least-squares method, the bub ble function approach, and other recent similar techniques provide excellent treatments of transport equations of elliptic type with small diffusive terms, referred to in fluid dynamics as advection-diffusion (or convection-diffusion) equations. Goals This book is an attempt to guide the reader in the construction of a computa tional code based on the spectral collocation method, using algebraic polyno mials. The main topic is the approximation of elliptic type boundary-value par tial differential equations in 2-D, with special attention to transport-diffusion equations, where the second-order diffusive terms are strongly dominated by the first-order advective terms. Applications will be considered especially in the case where nonlinear systems of partial differential equations can be re duced to a sequence of transport-diffusion equations.
目次
1. The Poisson equation in the square.- 2. Steady transport-diffusion equations.- 3. Other kinds of boundary conditions.- 4. The spectral element method.- 5. Time discretization.- 6. Extensions.- References.
「Nielsen BookData」 より