Existence theory for nonlinear ordinary differential equations
著者
書誌事項
Existence theory for nonlinear ordinary differential equations
(Mathematics and its applications, v. 398)
Kluwer, c1997
- : alk. paper
大学図書館所蔵 全23件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
We begin our applications of fixed point methods with existence of solutions to certain first order initial initial value problems. This problem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y'. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de fined either locally or globally on I, according to the assumptions imposed on I. Notice that (1. 1) is a system of first order equations because I takes its values in Rn. In section 3. 2 we will first establish some basic existence theorems which guarantee that a solution to (1. 1) exists for t > 0 and near zero. Familiar examples show that the interval of existence can be arbi trarily short, depending on the initial value r and the nonlinear behaviour of I. As a result we will also examine in section 3. 2 the dependence of the interval of existence on I and r. We mention in passing that, in the results which follow, the interval I can be replaced by any bounded interval and the initial value can be specified at any point in I. The reasoning needed to cover this slightly more general situation requires minor modifications on the arguments given here.
目次
1. Introduction, Notation and Preliminaries. 2. Fixed Point Theory. 3. Initial Value Problems. 4. First Order Periodic Problems. 5. Existence Principles for Second Order Boundary Value Problems. 6. Boundary Value Problems Without Growth Restrictions. 7. Positone Boundary Value Problems. 8. Semi-Positone Boundary Value Problems. 9. Differential Equations Singular in the Solution Variable. 10. Existence Principle for Singular Boundary Problems. 11. Nonresonance Problems in the Limit Circle Case. 12. Resonance Problems in the Limit Circle Case. 13. Boundary Value Problems on the Half Line. 14. Existence Theory for Ordinary Differential Equations on Compact and Noncompact Intervals. 15. Impulsive Differential Equations. 16. Differential Equations in Abstract Spaces. Index.
「Nielsen BookData」 より