Gaussian Hilbert spaces
Author(s)
Bibliographic Information
Gaussian Hilbert spaces
(Cambridge tracts in mathematics, 129)
Cambridge University Press, 1997
Available at 70 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Bibliography: p. 329-334
Includes indexes
Description and Table of Contents
Description
This book treats the very special and fundamental mathematical properties that hold for a family of Gaussian (or normal) random variables. Such random variables have many applications in probability theory, other parts of mathematics, statistics and theoretical physics. The emphasis throughout this book is on the mathematical structures common to all these applications. This will be an excellent resource for all researchers whose work involves random variables.
Table of Contents
- 1. Gaussian Hilbert spaces
- 2. Wiener chaos
- 3. Wick products
- 4. Tensor products and Fock spaces
- 5. Hypercontractivity
- 6. Distributions of variables with finite chaos expansions
- 7. Stochastic integration
- 8. Gaussian stochastic processes
- 9. Conditioning
- 10. Limit theorems for generalized U-statistics
- 11. Applications to operator theory
- 12. Some operators from quantum physics
- 13. The Cameron-Martin shift
- 14. Malliavin calculus
- 15. Transforms
- Appendices.
by "Nielsen BookData"