Asymptotic behaviour of linearly transformed sums of random variables
著者
書誌事項
Asymptotic behaviour of linearly transformed sums of random variables
(Mathematics and its applications, v. 416)
Kluwer Academic, c1997
- タイトル別名
-
Funkt︠s︡ionalʹnye metody v zadachakh summirovanii︠a︡ sluchaĭnykh velichin
大学図書館所蔵 全24件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 455-485
Includes index
内容説明・目次
内容説明
Limit theorems for random sequences may conventionally be divided into two large parts, one of them dealing with convergence of distributions (weak limit theorems) and the other, with almost sure convergence, that is to say, with asymptotic prop erties of almost all sample paths of the sequences involved (strong limit theorems). Although either of these directions is closely related to another one, each of them has its own range of specific problems, as well as the own methodology for solving the underlying problems. This book is devoted to the second of the above mentioned lines, which means that we study asymptotic behaviour of almost all sample paths of linearly transformed sums of independent random variables, vectors, and elements taking values in topological vector spaces. In the classical works of P.Levy, A.Ya.Khintchine, A.N.Kolmogorov, P.Hartman, A.Wintner, W.Feller, Yu.V.Prokhorov, and M.Loeve, the theory of almost sure asymptotic behaviour of increasing scalar-normed sums of independent random vari ables was constructed. This theory not only provides conditions of the almost sure convergence of series of independent random variables, but also studies different ver sions of the strong law of large numbers and the law of the iterated logarithm. One should point out that, even in this traditional framework, there are still problems which remain open, while many definitive results have been obtained quite recently.
目次
Preface. Part I: Random Series and Linear Transformations of Sequences of Independent Random Elements. 1. Series of Independent Random Elements. 2. Linear Transformations of Independent Random Elements and Series in Sequence Spaces. Part II: Limit Theorems for Operator-Normed Sums of Independent Random Vectors and Their Applications. 3. Operator-Normed Sums of Independent Random Vectors and Their Applications. 4. Operator-Normed Sums of Independent Identically Distributed Random Vectors. 5. Asymptotic Properties of Gaussian Markov Sequences. 6. Continuity of Sample Paths of Gaussian Markov Processes. 7. Asymptotic Properties of Recurrent Random Sequences. 8. The Interplay Between Strong and Weak Limit Theorems for Sums of Independent Random Variables. Comments. Bibliography. Subject Index. List of Notations.
「Nielsen BookData」 より