Comparison geometry
著者
書誌事項
Comparison geometry
(Mathematical Sciences Research Institute publications, 30)
Cambridge University Press, 1997
- : hard.
- : pbk.
大学図書館所蔵 全55件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
This book documents the focus on a branch of Riemannian geometry called Comparison Geometry. The simple idea of comparing the geometry of an arbitrary Riemannian manifold with the geometries of constant curvature spaces has seen a tremendous evolution of late. This volume is an up-to-date reflection of the recent development regarding spaces with lower (or two-sided) curvature bounds. The content of the volume reflects some of the most exciting activities in comparison geometry during the year and especially of the Mathematical Sciences Research Institute's workshop devoted to the subject. Both survey and research articles are featured. Complete proofs are often provided, and in one case a new unified strategy is presented and new proofs are offered. This volume will be a valuable source for advanced researchers and those who wish to learn about and contribute to this beautiful subject.
目次
- 1. Scalar curvature and geometrization conjectures for 3-manifolds Michael T. Anderson
- 2. Injectivity radius estimates and sphere theorems Uwe Abresch and Wolfgang T. Meyer
- 3. Aspects of Ricci curvature Tobias H. Colding
- 4. A genealogy of noncompact manifolds of nonnegative curvature: history and logic R. E. Greene
- 5. Differential geometric aspects of Alexandrov spaces Yukio Otsu
- 6. Convergence theorems in Riemannian geometry Peter Petersen
- 7. The comparison geometry of Ricci curvature Shunhui Zhu
- 8. Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers G. Perelman
- 9. Collapsing with no proper extremal subsets G. Perelman
- 10. Example of a complete Riemannian manifold of positive Ricci curvature with Euclidean volume growth and with nonunique asymptotic cone G. Perelman
- 11. Applications of quasigeodesics and gradient curves Anton Petrunin.
「Nielsen BookData」 より