Mathematics of data fusion
著者
書誌事項
Mathematics of data fusion
(Theory and decision library, Series B . Mathematical and statistical methods ; v. 37)
Kluwer Academic, c1997
大学図書館所蔵 全12件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Data fusion or information fusion are names which have been primarily assigned to military-oriented problems. In military applications, typical data fusion problems are: multisensor, multitarget detection, object identification, tracking, threat assessment, mission assessment and mission planning, among many others. However, it is clear that the basic underlying concepts underlying such fusion procedures can often be used in nonmilitary applications as well. The purpose of this book is twofold: First, to point out present gaps in the way data fusion problems are conceptually treated. Second, to address this issue by exhibiting mathematical tools which treat combination of evidence in the presence of uncertainty in a more systematic and comprehensive way. These techniques are based essentially on two novel ideas relating to probability theory: the newly developed fields of random set theory and conditional and relational event algebra.
This volume is intended to be both an update on research progress on data fusion and an introduction to potentially powerful new techniques: fuzzy logic, random set theory, and conditional and relational event algebra.
Audience: This volume can be used as a reference book for researchers and practitioners in data fusion or expert systems theory, or for graduate students as text for a research seminar or graduate level course.
目次
Preface. 1. Introduction. I: Introduction to Data Fusion. 2. Data Fusion and Standard Techniques. II: The Random Set Approach to Data Fusion. 3. Foundations of Random Sets. 4. Finite Random Sets. 5. Finite-Set Statistics. 6. Fusion of Unambiguous Observations. 7. Fusion of Ambiguous Observations. 8. Output Measurement. III: Use of Conditional and Relational Events in Data Fusion. 9. Introduction to the Conditional and Relational Event Algebra Aspects of Data Fusion. 10. Potential Application of Conditional Event Algebra to Combining Conditional Information. 11. Three Particular Conditional Event Algebras. 12. Further Development of Product Space Conditional Event Algebra. 13. Product Space Conditional Event Algebra as a Tool for Further Analysis of Conditional Event Algebra Issues. 14. Testing of Hypotheses for Distinctness of Events and Event Similarity Issues. 15. Testing Hypotheses and Estimation Relative to Natural Language Descriptions. 16. Development of Relational Event Algebra Proper to Address Data Fusion Problems. Index.
「Nielsen BookData」 より